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Abstract. We consider the time and space required for quantum computers to solve a wide
variety of problems involving matrices, many of which have only been analyzed classically in prior
work. Our main results show that for a range of linear algebra problems—including matrix-vector
product, matrix inversion, matrix multiplication and powering—existing classical time-space tradeoffs,
several of which are tight for every space bound, also apply to quantum algorithms with at most
a constant factor loss. For example, for almost all fixed matrices A, including the discrete Fourier
transform (DFT) matrix, we prove that quantum circuits with at most 7" input queries and S qubits
of memory require T = Q(n2/S) to compute matrix-vector product Az for 2 € {0,1}™. We similarly
prove that matrix multiplication for n X n binary matrices requires T = Q(n3/ \/§) Because many of
our lower bounds are matched by deterministic algorithms with the same time and space complexity,
our results show that quantum computers cannot provide any asymptotic advantage for these problems
with any space bound.

We obtain matching lower bounds for the stronger notion of quantum cumulative memory
complexity—the sum of the space per layer of a circuit.

We also consider Boolean (i.e. AND-OR) matrix multiplication and matrix-vector products, im-
proving the previous quantum time-space tradeoff lower bounds for n X n Boolean matrix multiplication
to T = Q(n2-5/51/4) from T = Q(n2-5/51/2).

Our improved lower bound for Boolean matrix multiplication is based on a new coloring argument
that extracts more from the strong direct product theorem that was the basis for prior work. To
obtain our tight lower bounds for linear algebra problems, we require much stronger bounds than
strong direct product theorems. We obtain these bounds by adding a new bucketing method to the
quantum recording-query technique of Zhandry that lets us apply classical arguments to upper bound
the success probability of quantum circuits.
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1. Introduction. Matrix computations are among the most fundamental compu-
tational problems and are critically important in areas such as numerical and scientific
computing, optimization, and machine learning. If quantum computers can be shown
to have a significant advantage over classical computations for these types of problems
then it would open up a wide range of applications for such devices.

Prior work has shown that non-standard versions of matrix problems may indeed
admit exponential or large polynomial quantum advantage: For any efficiently im-
plementable operator M, the HHL algorithm of Harrow, Hassidim, and Lloyd [28§]
(with the improvements of [21]) can efficiently e-approximate the value of zf Mz for
the solution x of a well-conditioned linear system. However, it is important to note
that this algorithm requires the input to be presented in an unconventional format.
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Many extensions of the HHL algorithm have also been proposed that can be
elegantly described in the quantum singular value transform (qSVT) framework first
described in [33] and popularized by [24]. Despite initial hope of exponential speed-up,
a series of papers by Tang and co-authors, and others (e.g. [44, 19, 20, 23, 8, 18]) has
shown that, by providing classical algorithms a comparable input format to the HHL
algorithm, these quantum algorithms can be replaced by classical ones with only a
polynomial blowup in the running time, although this polynomial is not always small.

This body of work still begs the question: What is the conventional quantum
complexity of standard classical problems like explicitly computing linear-system
solutions, multiplying or inverting matrices, computing matrix-vector products, and
computing the low rank approximation of a matrix?

By the polynomial method, we know that computing a single inner product
(or parity) of n-bit vectors requires Q(n) quantum queries [9], but linear algebra
computations generally involve Q(n) or Q(n?) such computations. Sherstov [40],
generalizing results of Klauck, Spalek, and de Wolf [31] for the OR function, gave a
strong direct product lower bound for quantum query complexity proved using the
polynomial method, which yields strong lower bounds for inner products involving
many disjoint input vectors. However, the matrix problems in linear algebra are very
far from direct product problems: The vectors involved are highly correlated with each
other, so this prior work does not shed light on the key question of whether quantum
algorithms provide any advantage for general linear algebra.

In this paper, we resolve these questions for quantum computation of a wide
array of linear algebra problems, proving lower bounds for quantum computation that
are asymptotically the same as the best classical lower bounds. Since many of the
problems also have deterministic algorithms whose resource usage matches the lower
bounds, our results show that there is provably no asymptotic quantum advantage at
all in solving these linear algebra problems!

As with the study of classical computation involving super-linear time lower
bounds, we consider quantum algorithms in which we limit the number of qubits of
memory and hence produce quantum time-space tradeoffs. That is, for each fixed
bound on the amount of memory allowed, we derive asymptotically the same time
lower bound for the quantum algorithm as one would get for the time lower bound on
classical algorithms with the same number of classical bits. In many ways, quantum
memory is an even more critical resource than classical memory since it is a measure
of the maximum number of qubits that maintain coherence at any time during the
algorithm’s execution. For this reason the first general-purpose fault-tolerant quantum
computers will likely have very limited memory and only be able to execute low depth
quantum circuits. As such, it is crucial to consider both the time and space complexity
for quantum algorithms.

We prove our lower bounds for quantum computation in a query model where
algorithms are able to perform arbitrary input-independent unitary transformations on
their state between quantum queries to their input. This is a sufficiently general model
that our lower bounds also apply to any reasonable model of quantum computation—
including quantum circuits where the (classical) input is stored in quantum-readable
read only memory (QROM).

The keys to proving our time-space tradeoffs are new results that yield much
stronger lower bounds than strong direct product theorems for matrix-vector products
and matrix multiplication. While our bounds have the same form as strong direct
product theorems (the success probability decays exponentially with the number of
outputs), they also apply with almost completely overlapping sets of inputs, in contrast
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to the disjoint inputs that are necessary to apply direct product theorems.

While there is a large body of work proving strong classical time-space tradeoffs (e.g.
[45, 17, 46, 16, 3, 4, 10, 34]) and a large body of work analyzing unrestricted quantum
query algorithms versus their classical randomized counterparts (e.g. [22, 15, 41, 9, 6,
43, 42, 39]), there are just a few previous papers that analyze the quantum memory
required to make use of these quantum queries. Klauck, Spalek, and de Wolf [31]
extended the classical method of Borodin and Cook [16] for proving time-space tradeoffs
to quantum circuits using a new strong direct product theorem for quantum query
algorithms computing the OR function. They showed that algorithms making T
quantum queries and using S qubits of quantum memory require 7' = ©(n'-5/S 1/ %) to
sort lists of length n, and require T = Q(n?®/5'/?) to compute n x n Boolean matrix
product. Ambainis, Spalek, and de Wolf [7] extended this direct product approach
to 2-sided error algorithms computing k-threshold functions which allowed them to
produce similar trade-off lower bounds for systems of linear inequalities/equalities
(though these have the drawback, unlike the other results, that the hard function for
space S depends on the space bound). This approach, based on an extension of the
adversary method using eigenspace analysis, was very difficult to apply.

As a result, further study of quantum time-space tradeoff lower bounds languished
until it was enabled by an idea of Zhandry [47] who, motivated by understanding
quantum algorithms interacting with random function oracles, developed an approach
to understanding quantum query algorithms using a compressed oracle and Fourier
analysis. This views computations in a recording query basis that allow one to keep
track of a quantum query algorithm as a superposition of basis states that have
a natural classical query interpretation. It has been applied to finding multi-way
collisions [32] and to inverting a random permutation [35]. This greatly simplifies
the analysis of quantum query algorithms and can be applied to many lower bound
methods that use randomly chosen inputs rather than being limited to cryptographic
applications.

Extending Zhandry’s approach, Hamoudi and Magniez [27] applied an even cleaner
expression of the method, using phase oracles with the recording query basis rather
than Fourier analysis, and extended it using biased random inputs to derive query
lower bounds in a regime of exponentially small success probability. They used this to
obtain time-space tradeoff lower bounds, proving that any quantum algorithm that
finds K disjoint collisions in an input of length n with 7" quantum queries and S qubits
of memory must have T = Q(K N'/3/5'/3). They also re-derived the earlier sorting
lower bound using this method.

Our linear algebra lower bounds and methods. Time-space trade-off lower bounds
for linear algebraic problems were among the first to be studied for classical compu-
tation [46] after the first bounds for sorting. The strongest classical results are due
to Abrahamson [4] who developed a powerful general method based on matrix rigid-
ity. This yields state-of-the-art lower bounds for computation of Fourier transforms,
convolution, matrix-vector products, matrix multiplication, matrix inversion, matrix
powering, and linear system solving. The lack of any analogous results for quantum
computation has been a substantial gap in our understanding®.

Our results show that all the linear algebraic time-space tradeoff lower bounds

1Over a field of more than n elements, one can reduce n x n Boolean matrix multiplication to
ordinary multiplication of 0-1 matrices but the lower bound is inherently too weak because in the
Boolean case each output bit is a disjointness function of its inputs and hence can be computed using
only O(y/n) quantum queries using Grover’s algorithm ([25]).
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shown by Abrahamson [4] also apply to quantum computation even when the quantum
circuit can adaptively decide when to produce output based on the observed input?.
Since many of these classical lower bounds are tight, our results directly imply that
there is no hybrid classical-quantum algorithms with a polynomial advantage for these
problems unlike the query bounds for search and collision finding in [26]. Using the
generic results in [12], we also prove asymptotically equivalent lower bounds on the
stronger notion of quantum cumulative memory complexity for these problems. We
include a table of our time-space tradeoff lower bounds in Table 1.

As discussed already, we need a much stronger lower bound method than any
derivable from strong direct product theorems. We do this by the adding new ideas
to the compressed oracle/recording query approach of Zhandry [47] as extended and
applied by Magniez and Hamoudi [27]. Thus far, the compressed oracle method has
used a two-step pattern: First, identify a notion of unusual progress of a quantum
algorithm towards a solution (i.e., the partial information so far is more determinative
of the answer than one might expect) and show that the total amplitude of states
where this occurs is small, Second, show that the total amplitude of the quantum
states where many outputs are produced without unusual progress can be bounded;
this latter part has used ideas with classical analogs that can be applied by breaking
the algorithm’s final state into mutually orthogonal components, each with small
amplitude on the correct answers.

However, in our case with linear algebra problems, there is no form of unusual
progress and also no clear way to break up the problem into mutually orthogonal
basis states. Thus, neither part of the pattern seems to work. Instead, we can use
the recording query framework to characterize how much a quantum circuit can
know about its input. We use the triangle inequality to bucket amplitude from the
algorithm’s state into a small number of non-orthogonal components (or buckets) that
share some set of inputs that they know nothing about. We can then apply a classical
argument showing that each component must have small amplitude on the correct
answers. By finding a way to divide the state into a small number of buckets that
each have small amplitude on correct answers, we can obtain tight lower bounds. The
properties required of this division become more subtle as we move to the problem of
matrix multiplication, where in order to get small amplitude, we need to contend with
a partition featuring significantly more parts.

Improved bounds for Boolean matrix operations. Here we improve the previous
lower bound for quantum algorithms computing Boolean matrix multiplication given
in [31] from T = Q(n%*°/S'2) to T = Q(n>®/SY*). We do this using a more
sophisticated embedding of the k-fold direct product of OR functions into an arbitrary
subset of k outputs of Boolean matrix multiplication. The embedding hinges on the
number of colors needed for a certain kind of partial coloring of subsets E of the
n X n grid. The exponents of n and S in our lower bound are optimal for the general
quantum circuit model to which it applies.

Our lower bounds also lead to improving the classical lower bound tradeoff of
T = Q(n?/8S) for circuits shown in [31] to T = Q(n?/S'/?). (In these bounds, T is
circuit depth and S is circuit width.) Just as with our quantum lower bound, this has
optimal exponents for n and S, achieving the goal of Klauck, Spalek, and de Wolf [31]
who suggested that 725 = Q(n%) was a likely tight tradeoff for classical computation of
Boolean matrix multiplication. It is strictly larger almost everywhere than a classical

2Similar to [4], our bounds apply even when input entries are chosen from an arbitrary fixed
subset D of a potentially larger field.
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TABLE 1
Summary of our quantum lower bounds, along with prior work. Inputs are assumed to be of
length n vectors or n X n matrices. Our linear algebra bounds apply for input elements coming from
any fized subset D of a field with d = |D|. These are the first quantum time-space lower bounds for
all of these problems other than Boolean matriz multiplication. Problems with deterministic classical
query algorithms given in [29] and [4] that match our quantum query lower bounds are denoted with
© notation instead of Q2. Constructions of the matching query algorithms can be found in section A.

Problem Quantum Lower Bound Source
Matrix Multiplication T = O(n? (logd)?5/5%%)  Theorem 5.1
f(A,B)=AB
Matrix Squaring T = ©(n? (logd)®5/S%5)  Corollary 5.5
f(A) = A2
Matrix Triple Product T = O(n*logd /9) Corollary 4.12
f(A,B,C)=ABC
Matrix Cubing T = ©(n*logd /S) Corollary 4.13
f(A) = A°
Matrix Inversion T = Q(n*logd /S) Corollary 4.14
fl4)=4""
System of Linear Equations T = Q(n®logd /S) Corollary 4.15
f(Ay)=A"ly
Matrix-Vector Product T = 0O(n?logd /9) Theorem 4.1
f(z) = Az
Discrete Fourier Transform T =0©(nlogd /S) Corollary 4.6
flz) =Wa
Convolution T = 0O(n?logd /9) Corollary 4.8
flu,v) =uxv
Binary Integer Multiplication T = Q(n?/(S log®n)) Corollary 4.9
Boolean Matrix Multiplication T = Q(n?:5/5°-5) [31]
f(A,B)=AeB T = Q(n%?/5%2) Theorem 6.5
Classical T = Q(n?/9) [31, 3]
Classical T = Q(n3%/9) for S >cn  [3]
Classical T = ©(n3/5%?) Theorem 6.15
Boolean Matrix Squaring T = Q(n%5/5%25) Corollary 6.17

Ff(A)=AeA

lower bound of T'= Q(n3/S) for S < n®5 and T = Q(n>?/S) for S > n for Boolean
matrix multiplication on branching programs (a more general model than circuits)
due to Abrahamson [3] that is tight almost surely for input matrices whose entries are
1 with probability 1/4/n independently.

Finally, we make a small adjustment to convert the Boolean matrix-vector lower
bounds and lower bounds for systems of inequalities given in [31] and [7], respectively,
so that the problems that are shown hard for space S do not depend on S.

Organization. section 2 contains a formalization of space-bounded quantum com-
putation and its relationship to the computation of multi-output functions like the
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ones we consider, an overview of the Borodin-Cook method for proving time-space
tradeoff lower bounds, and a review of the recording technique for quantum query
algorithms. It also discusses some of the linear algebra concepts from prior work that
we will need.

sections 4 and 5 contain our lower bounds for linear algebra problems. They use
two different versions of our new bucketing methods for recording-query basis states,
which we discuss earlier in general terms in section 3. Though there are some brief
mentions in sections 4 and 5 of the connections to the general discussion of bucketing,
these sections can also be read on their own without first reading section 3. In any
case, section B should be skipped on first reading since it is not related to any of the
specific lower bounds in this paper.

Our lower bounds for Boolean matrix problems are in section 6 and do not use
bucketing or depend on any of our methods for linear algebra. section A contains a
review of the known query algorithms that match our time-space tradeoff lower bounds
for quantum computation. Finally, we discuss some directions and open problems in
section 7.

2. Preliminaries. We define the binary entropy function Hs : [0,1] — R, by
Hy(p) = —plogy p — (1 — p) logy(1 — p).

PROPOSITION 2.1 (Shannon). The number of subsets of [k] of size at most ak is
at most 212()k,

DEFINITION 2.2. An m xn matriz is (g, h, c)-rigid iff every k x w submatriz where
k < g and w > n — h has rank at least ck. We call (g, h, 1)-rigid matrices (g, h)-rigid.

Matrix rigidity is a robust notion of rank and is an important property for proving
time-space and cumulative complexity lower bounds for linear algebra. Fortunately,
Yesha gives an explicit example of such a matrix and Abrahamson proved that there
are many rigid square matrices.

PROPOSITION 2.3 (Lemma 3.2 in [46]). The n x n Discrete Fourier Transform
(DFT) matriz is (n/4,n/4,1/2) rigid.

PROPOSITION 2.4 (Lemma 4.3 in [4]). There is a constant vy € (0,3) such that at
least a 1 —d~1(2/3)"™ fraction of the matrices over D™"*™ with |D| = d are (yn,yn)-
rigid.

2.1. Time space tradeoffs for multi-output functions.

Unitary quantum circuits with oracle states. Throughout this paper, we consider
quantum circuits that seek to compute target functions f : D™ — R™ (or functions
f: D™ — 2 (R), where % is powerset, and the requirement on each input x is
to output at least m elements of f(z) if they exist). Let d = |D| and assume the
existence of some canonical bijective map v : D — {0,...,d — 1} that gives us an
ordering on the elements of D. A T-query quantum circuit C is specified using input
independent unitaries Uy, ..., Ur. These unitaries define a sequence of quantum states
[¥1)c - - |17)e that an algorithm enters during its execution. When it is ambiguous,
we use the subscript C to denote the partial trace of |¢;) that keeps only the qubits
involved in the state of the query algorithm. Note that even though [|¢,) is always a
pure state, [1);). is often a mixed state. We can think of each of these states |¢;), as
a linear combination of basis vectors |i, p, w) where i represents an index to query, p
represents a phase for the query, and w contains all the remaining qubits of the state.

Similar to [6, 47, 27], we define a general oracle operator O that interacts with an
input register that starts in a state [¢9),. When it is ambiguous, we use the subscript
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O to denote the partial trace of |i;) that keeps only the qubits involved in the state
of the oracle containing the input. Given a distribution D over D", we can make
[Y0)o = Y xepn VPrxiop[X’ = X]|X) to represent an input sampled from D. We
define our oracle operator O as

Oli,p,w) |X) = wi™ |i,p,w) |X) .

Thus the joint state of the input and quantum circuit at the end of the computation
is given by [¢r) = UrO...OUy |¢g) where [t) = [0)c @ |th0)e-

The output of the quantum circuit is determined by measuring the work register
of |¢1) in the standard basis and applying some input-independent post-processing
function ¢ to interpret the result as an output 7 € R” where J C [m]. The correctness
of these output values is then determined by measuring the input registers in the
standard basis to obtain the input X and evaluating whether 7 is consistent with
f(X), which we denote by writing 7| f(X). In general we can define the projector IIj
where:

(2.1) I, = Z li,p,w, @1, ..., Tp) (i, D, W, X1, ..., T
i)p)w7zl7“')xn

site Q) F (1)
and |g(w)|>k

The probability that the circuit produces a correct partial assignment of at least k
output values is given by ||IIj |17)||?. For a given partial assignment ¢(w) to some
outputs, we can define Il;,) to be the projection onto the values of |X) where
q(w)]| f(X). More specifically we have that:

(2.2) Hywy = Y |21, zn) (@1, 2

L1,..,Tn
st q(w)||f(@1,s@n)

By construction when ¢ always produces a partial assignment of at least k elements
we have that I, =7, i, p,w) (i, p, w| @ ).

Space-bounded quantum computation. As described above, we think of space-
bounded quantum circuits as starting in the all |0) state and cycling between applying
input queries O, and arbitrary input-independent computation U;. Unlike in the unitary
circuit model, we allow our space-bounded quantum circuits to make intermediate
measurements after applying each U; as shown in Figure 1. Adopting the notation of
[12], we will consider the set of consecutive O, U; and measurement gates as layer L;.
As was done in [27], we will assume that the quantum query circuit has a dedicated
register containing a boolean flag and a potential output (i,y;) € [m] x R. After each
query O and subsequent unitary operation Uy, the flag register is measured in the
standard basis. Should the outcome 1 be obtained, the output register is measured
in the standard basis and interpreted as an output pair (7, y;) which is written to a
write-only tape. Otherwise, the circuit produces no output during this layer. The
space of layer L; is the number of qubits that are passed from layer L; to L;y; and is
denoted S;. We define the space of a circuit as the maximum space of any layer, the
time as the total number of layers, and the cumulative memory as the sum over all the
S;. Thus the space needed to store the input and output is not included in this model.

Intermediate measurements enable circuits to produce parts of their output early
and discard unnecessary ancillary qubits. Similar to the disjoint collisions bound in
[27], our results in sections 4 and 5 apply to quantum circuits without any required
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Fic. 1. A general quantum circuit with T queries.

structure on their output order. Thus, as long as the circuits produce the correct
output value for each index 7, they may do so during arbitrary layers of the circuit
that may depend on the chosen input. However, as was the case in [31], our results
for quantum Boolean matrix multiplication in section 6 apply to a more restricted
model of computation where the choice of when to produce each output value is
independent of the input. In this output-oblivious model, quantum circuits do not
have a flag register. Instead, on predefined layers the quantum circuit measures the

output register in the standard basis and interprets the result as an element of R

corresponding to a fixed output index. This output-oblivious ordering restricts the

set of allowed algorithms and is necessary to prove our key lemmas associated with

Boolean matrix multiplication.

Space-bounded classical computation. One can view our classical lower bounds
in section 6 as applying to layered branching programs [16] where the space bound
corresponds to the logarithm of the width of the program and the time corresponds to
the number of layers. Output in a branching program is produced along the edges and
written to a write-only output tape. Thus the space bound of a classical computation
only considers the S bits of internal state maintained by the device and not the size
of its read-only input or write-only output. Our results for classical Boolean matrix
multiplication in section 6 apply to an output-oblivious model, which corresponds to
branching programs that must produce outputs for the same output index regardless
of which edge is taken between two layers.

The Borodin-Cook method. The Borodin-Cook method provides a general frame-
work for proving time-space tradeoff lower bounds for multi-output problems, those
for which every input vector in D™ is associated with some fixed set of possible output
values from set R and the objective is to output at least m of these output values. As
discussed earlier these can be functions f : D™ — R™, or f: D™ — P(R) where the
requirement is to produce at least m elements of f(D™"), if they exist3.

The property of the function f that enables the Borodin-Cook method to be used
is the following? for some well-behaved function h(k,n):

(*) Let ¢ = ¢(D) > 1. Any classical query algorithm that makes at most t < h =
h(k,n) queries for an input distribution D on D", correctly produces k correct
output values of f with probability at most c¢=*.

With this property, Borodin and Cook showed that one directly obtains a classical

time-space tradeoff for computing f of the form T'- .S = Q(m h(S/(logc),n) logc) for

time T that is n®(") and space S as follows:

Proof sketch. Choose k with logn < k < m such that 2% .7 -¢™* < 1; then k is
roughly S/(logc).
Divide the T query steps into disjoint blocks of h = h(k,n) queries each and

3There is a more general version where the query algorithm is only required to produce these m
outputs with some sufficiently high probability but we focus on the simpler form

4We do not specify an upper limit on the possible k < m in this informal statement. The exact
range for which it holds will impact the space bounds for which the tradeoff holds.
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assume that T' is a multiple of h, without loss of generality. Since m outputs must
be produced on all inputs in D™ and there are T'/h blocks, for T' < mh/k, which is
O(mhloge /5), for every execution on every input there must some block where at
least k correct outputs are produced.

However, since the space is at most S there are at most 2° configurations of the
states that the algorithm could have been in at the beginning of each time block.
Since (*) says that any fixed block can produce at least k output values correctly with
probability at most ¢~* under D, by a union bound the total probability that some
fixed block produces at least k correct output values is at most 2°c=* < 1/T by our
choice of k. Since there are only T'/h blocks, the probability that there is one of them
that produces k correct answers is < 1.

Therefore T must be Q(mhloge /S) as required. d

For quantum algorithms, Klauck et al. [31] observed that one could use a result
by Aaronson in place of the union bound over the 25 classical state configurations at
the start of each block in the Borodin-Cook method.

PROPOSITION 2.5 ([1]). Let C be a quantum circuit, p be an S-qubit (possibly
mized) state, and T, be the S-qubit mazimally mized state. If C starting in initial
state p produces some output z with probability p, then C starting in state T, will
produce z with probability q which is at least p/2°.

We include a stand-alone derivation here for completeness.

Proof. Without loss of generality we can assume C performs no measurements until
the end of the circuit. Thus we can think of C as representing a unitary operator U. Let
IT, be the projection onto output states of C that cause the circuit to output the value
z. Then p, = Tr[II,UpU"]. By the spectral decomposition theorem we can represent p
as a convex combination of some set of orthogonal pure states p = 3, cps) Ai [9i) (il-

Since the maximally mixed state can be represented as Tmiz = 3, c2s)(1/ 25) |:) (il
we have that:

qg="Tr [HZUWmmUT]

=Tr [HZU( > 2% i) <w|)U*]

1€[25]

Lo
=55 L Z <‘Pi|UTHzU|90i>:|

-i€25

35 Z i (@i| UTTLLU %>]

-i€25

= =T | ( 3 Ao (o )|

i€[25]

—

%
=

1
= 55 Ir[ILUpUT] = p/2°

Where the inequality comes from the fact that (| UTTI,U |p) > 0 for any state |p).0

With this they showed that essentially the same paradigm could be used to give
similar time-space tradeoff lower bounds for quantum algorithms if one can prove
a quantum analog of (*). One subtlety that arises from the quantum version of
the Borodin-Cook method is that often the quantum version of (*) is proven in a
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non-space-bounded unitary circuit model without intermediate measurements. By
using the deferred measurement principle, we can see that lower bounds on the success
probability of short quantum circuits in this model imply equally tight lower bounds
in the space-bounded model where we directly apply the Borodin-Cook method.

2.2. The quantum recording query technique. Here we review the methods
developed in [47, 27] that allow us to analyze what a quantum circuit learns about
its input by making quantum queries. We will assume that the input state |1g),,
is the equal superposition state over all inputs, although [47, 27, 35] generalize this
method to other input distributions. We can exchange the general query operator O
for the uniform input distribution with a recording query operator R that we define
as follows:

DEFINITION 2.6 (adapted from [27]). Let D be the input alphabet, d = |D|, and
v be our choice of canonical bijection between D and {0,...,d —1}. We define S to
be the unitary operator that maps

L) LY ol
Si:{ LY nl) — |1

2 ety — E Wt ) el d— 1}

Let S = (1)ipw @ (SP™)ay
basis state

=, and O be the standard oracle operator that maps the

.....

(zi)

. pl/ .
i, p, W, T1, ..., Tn) —> Wy GyDy W, Ty ey Ty )

Then the recording query oracle operator R is defined as SOS.

S1 introduces L as a new value for the input registers. Intuitively, the L symbol
indicates that the algorithm does not know anything about that register of the oracle.
Hence by adding and correctly manipulating the 1 symbols in the oracle’s registers, we
can record what the algorithm knows about the input. Since S? = I, we can exactly
characterize how the states of quantum circuits with oracles O and R relate to one
another.

PROPOSITION 2.7 (Theorem 3.3 in [27]). Let C be a quantum circuit that for each
Jj <t applies unitary U; after the j-th query. Let S be the unitary operation and R be
the recording query oracle from Definition 2.6. Let

1
|’(ﬁt> = UtOUtl...U10U0(|O>i,p7w & W Z |x17""$”>x1,...,mn)

T1,...,En€D

,,,,,

be the states of C with oracle O or R respectively. Then ) = S |p¢).

In other words, it is impossible to distinguish the final state |¢)7) of a circuit
with standard oracle O from the output with recording oracle R if we apply S to the
registers of R after the final query. Thus we can conclude that the success probability
of a quantum circuit with 1" queries producing a partial assignment of & correct output
values is given by [[II;, [17)||?> = ||IIxS |¢7)||?. Note that while |¢7) may have inputs
in the L state, Proposition 2.7 tells us that S |¢r) will never have an input in the L
state. This means that when considering recording query oracles, it is safe to keep
our current definitions of Il and Il which will always project out any basis state
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where an input is assigned to L. We will leverage the following property of |¢r) to
bound the success probability of quantum circuits with at most T queries.

DEFINITION 2.8. Let T'; be the set of all elements (DU{L})™ with at most t non-L
elements. This is the set of indices for all recording query basis states associated with
quantum algorithms that make at most t queries.

PRrROPOSITION 2.9 (Fact 3.2 in [27]). The state |¢¢) from Proposition 2.7 is a
linear combination of basis states |i,p,w,x1,...,&,) where (x1,...,x,) € T'y.

For the bounds in [27] it is essential to bound how the state of |¢), can change
after each query. For our use of the recording query technique, this detailed analysis is
not necessary. Nevertheless, we state the following proposition here for completeness.

PROPOSITION 2.10 (Lemma 4.1 in [27]). Let D be the input alphabet, d = |D|,
and v be our choice of canonical bijection between D and {0, ...,d—1}. If the recording
query operator R is applied to a basis state |i,p,w,x1,...,x,) where p # 0 then the
register |x;) is mapped to

pv(y)

= ) =1
ye
) pv(zy) _ vy _ pv(z;)
(1 . %)wsu(m) 901> + é |xz> + Wd\/a |L> + E M |y> otherwise.
yeD\{z:}

If p = 0 then the register remains unchanged.

3. Our bucketing methods.

The Borodin-Cook method with recording queries. Paraphrasing (*) from our
earlier description of the Borodin-Cook method, to derive a time-space tradeoff lower
bound for a function f : D™ — R™ or f: D™ — P(R), we need to prove that any
quantum query algorithm making at most some h(k,n) queries can correctly produce
at least k of the m output values only with a probability that decays exponentially
in k (over the random choice of the input and the quantum measurements). In the
recording query method, both the input and the state of the quantum algorithm are
encoded in quantum states where measuring the local state of the algorithm determines
the produced outputs (both indices and values) and measuring the local state of the
input determines the classical input to the problem instance. Which k output positions
are produced may depend on the input, so the paradigm proceeds by fixing both the
quantum query algorithm and the k output values produced, and arguing that those
k output values are correct for a fraction of the amplitude of the input state that is
exponentially small in k.

Before discussing our bucketing method to do this, we first give some more detail
about the method of Hamoudi and Magniez [27], as expressed in their lower bound for
the m-disjoint collision problem. The method of Hamoudi and Magniez operates in
two parts. They show that

e for any quantum query algorithm (making at most eky/n queries), only an
exponentially small fraction in k£ of the total amplitude of the input is on
recording query basis states with at least k/2 disjoint collisions explicitly
represented in the state (and hence for which at least k/2 outputs would
automatically be correct), and

e for any fixed partial assignment of k output values (disjoint collisions), the
fraction of the total amplitude on recording query basis states that do not
explicitly represent at least k/2 of those output values as collisions on which
all k£ output values are correct is exponentially small in k.
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The first part has most of the quantum flavor of the argument since the growth in the
number of disjoint collisions observed is much faster in the quantum case than in the
corresponding classical case. Because the k-disjoint collisions problem involves explicit
local properties of the input, the second part involves many orthogonal components
and hence is a rather straightforward adaptation of a classical argument, with a
Cauchy-Schwartz calculation replacing a union bound.

In all of the matrix problems we consider, correctness of the output values depends
on the input values in highly non-local ways that do not yield the kind of orthogonality
properties that Hamoudi and Magniez are able to exploit. There also is no analog of
the kind of progress argument from the first part available. We have to work simply
from a bound on the total number of queries that the algorithm makes. To handle
this we introduce a bucketing approach.

3.1. Bucketing. Throughout this section we assume a fixed function f defined
on D™ with m output values; all of our definitions are implicitly defined relative
to this fixed function. The bucketing processes we define apply to the state of a
quantum query algorithm after it has made ¢ queries to a recording query oracle. By
Proposition 2.9, such a state is a linear combination of basis states |i, p, w, ) with
x € T'y. Then for any partial assignment ¢ of k output values that the query algorithm
could have produced, we wish to prove that the fraction of the total amplitude on
which the recording query input leads to an output that agrees with q is exponentially
small in k.

DEFINITION 3.1. Let g be a partial assignment of k output values and I1; be the
projector defined in (2.2) for this partial assignment. For ¢ > 1, we define a c-admissible
bucket B for q to be a subset of (DU {L})™ with the property that any quantum state
over the inputs that is spanned by the elements of B (i.e. |¢p) =Y _pay |T)) satisfies
TS [)|I* < c=*.

In our definitions of admissible buckets, the exponentially small bound will follow
from the fact that for some fixed set of a &’ > 'k of the k output values, any state
spanned by the elements of B will have a squared amplitude for those k' outputs of ¢
being correct of exactly d=*': ie., that of a completely random guess. In this case,
c=4d°.

DEFINITION 3.2. Let A be a subset of (DU{L})". ThenIla =3 4 |x) (z|. The
total amplitude of a state |¢p;) on recording query basis states in A is ||I14 |p¢)]|-

zEB

In subsection 2.1 we defined projectors II;, where k € N and I1,(w) where g(w) € R/
for J C [m] as ways to project onto basis states associated with the quantum circuit
producing k correct output values or associated with a assignment g(w) being correct
for the value in the input register. Here, we use projectors I14 to keep track of the
contributions associated with various sets of recording query basis states in the analysis
of our bucketing methods.

DEFINITION 3.3. A t-family of c-admissible buckets with size £ for a partial as-
signment q of k output values is a collection B of subsets of (D U{L})™ such that
1 |B| S 67
e cach B € B is a c-admissible bucket for q, and
o cvery element of I'y is in at least one c-admissible bucket B € B.

The simple version of bucketing recording queries that we use to prove our lower
bound for matrix-vector products works by showing that for ¢ < h(k,n) and each
partial assignment of k output values ¢, there is a t-family of c-admissible buckets
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B whose size is not too large. The amplitudes of the recording query basis states
indexed by I'; can be partitioned arbitrarily by assigning each element of I'; to some
c-admissible bucket in the family that contains it. We obtain that the total squared
amplitude associated with successfully producing output ¢ is at most |B|?/c* for ¢ > 1.
For matrix-vector product with suitable fixed matrices, we are able to show in this
case that |B|? is at most b* for some b < ¢ and hence obtain an upper bound on the
overall success probability that is exponentially small in k.

In the case of matrix multiplication, the families of admissible buckets we can
produce are much too large. The basic approach above does not tailor the choice of
buckets to the specific final state of the recording query input. We will instead need
to produce an association of basis states with buckets that depends on the final state
of the recording query input.

DEFINITION 3.4. A weighted t-scheme of c-admissible buckets with total weight w
for a partial assignment q of k output values is a mapping that takes any quantum state
|p+) defined over recording query basis state indexed by T'y to a t-family of c-admissible
buckets B and an assignment of weights wp € [0,1] to sets B € B such that

o for every B € B we have |1l |¢1)|| < wp and
* ZBGB wp < w.
When we want to emphasize the dependence of B on |¢;) we write it as By,

A t-family of c-admissible buckets B’ with size £ can always be interpreted as
a weighted t-scheme of c-admissible buckets with total weight ¢ by always setting
By, = B" and weight wp =1 for each B € B'.

LEMMA 3.5. Let g be a partial assignment of k output values and II,; be the
projector defined in (2.2) for this partial assignment. If there is a weighted t-scheme
of c-admissible buckets with total weight w for q then there is a constant ¢ > 0 such
that for any quantum state |¢;) defined over recording query basis states indexed by Ty,
TS [66)[? < w? - e+,

Proof. Let |¢1) = ), cr, @z |) be a quantum state defined over recording query
basis elements indexed by I';. Let Bjy,) with associated weights wp for B € Bjy,) be
given by the weighted ¢-scheme of c-admissible buckets for state [¢;). For B € B,), by
definition, we have Ilg |¢;) = Z oy |z) and ||Z oy )| = ||Hp |ét)|| < wp. Then,

z€B z€B
since every x € I'y is contained in some B € B|4,), we have

TS (o) |* < 1,8 Y Mg led)f?

BeB|g,)

= [[I,S Z Za1|x>||2

BEBNH,) zeB

(% Ims Zazmn)z

BEBM, ) z€B

(X walms 2 |)

BEBM, ) rEB

By definition, Qe 7Y is a vector whose 2-norm is at most 1 and the fact that

z€B wpB
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B is a c-admissible bucket for ¢, implies that

( S wB||HqufU‘;az>||)2§( 3 wB.c_k/2>2:w2.c_k

B€B|¢t> r€B BGBWU

which yields our claimed bound on ||[I1,S |#;)||>. ad

Note that setting each wp to 1 regardless of the quantum state gives us that
ITL,S |pe)|| < |B)?c™*, which is the simpler bound we use for the matrix-vector product
case. Though weighted schemes are much more flexible than such simple families and
can yield bounds where those may not, choosing good weights presents an additional
challenge. The follow concept will allow us to define these weights implicitly and is
what we use when we analyze matrix product algorithms.

DEFINITION 3.6. A t-reduction scheme of c-admissible buckets with size £ for
a partial assignment q of k output values is a mapping that takes any quantum
state that involves a combination of recording query basis elements indexed by T'y,
|pt) =D .er, 0z |2), and outputs a collection of buckets B and a subset I'y C I'y such
that
each B € B is a c-admissible bucket for q,
every element of T} is in at least one c-admissible bucket in B, and
the total amplitude of |¢;) on recording query basis states in T'y \ T}, is at most
1/2. In other words, || \r [¢n)| < 1/2.

LEMMA 3.7. The existence of a t-reduction scheme of c-admissible buckets with
size £ implies the existence of a weighted t-scheme of c-admissible buckets with total
weight 20.

Proof. Fix q as the partial assignment to k output values and |¢;) as any input
state over recording query basis states indexed by I';. We apply the reduction scheme
with the full state to begin with. This yields a collection of c-admissible buckets B of
size £ and a set I',. Without loss of generality we can assume that ', = UgepB, as
otherwise we could always define another ¢-reduction scheme of c-admissible buckets
with size ¢ with this choice of T"} to use instead. We assign weight 1 to all those
buckets.

The remaining total amplitude of states in I'; is at most 1/2. We apply the
reduction scheme inductively to the state |¢}) = Ip,\r; |¢¢) /|[Tp,\r; [¢¢) || which is a
renormalized state for the portion of |¢;) defined on T'; \ T';. This yields a new set of at
most £ buckets, each of which we assign weight 1/2. Each iteration of this procedure
results in a renormalized state whose support is a strictly smaller subset of I';. We
repeat in this way until we have exhausted all of I'; and produced a weighted ¢-scheme
of c-admissible buckets. The total weight of this scheme is at most -, ¢/2" < 20.0

COROLLARY 3.8. Let q be a partial assignment of k output values and 11, be the
projector defined in (2.2) for this partial assignment. The existence of a t-reduction
scheme of c-admissible buckets with size £ for q implies that for any quantum state
|91) =D ser,a. |z there is a constant ¢ > 0 such that [|[I1,S ) ||? < 402 - c*.

In sections 4 and 5 we use the above ideas to prove our lower bounds on matrix-
vector products and matrix multiplication, respectively. However, it is also possible
to produce reduction schemes of admissible buckets from a combinatorial property of
the set of all admissible buckets without needing to reason about the amplitude of
quantum states. We explore this idea further in section B.
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4. Quantum matrix vector products. In this section, we consider the task
of — for a fixed matrix A € F™*"™ — computing the function f4(xz) = Az for inputs
x € D™ (where D is a fixed subset of F) using a quantum circuit. We note that this
is a fundamentally harder task than is considered in many quantum machine learning
papers (for example [28]) as we require the circuit to output a classical vector y € F"
rather than either a quantum state encoding the entries of y in the amplitudes or an
estimate of y'My. Also unlike many prior quantum time-space tradeoffs, including
sorting [31, 27, 12] and boolean matrix multiplication [31] (and our Theorem 6.5), our
matrix vector product and matrix multiplication lower bounds apply to circuits that
can adaptively decide when to produce each output based on the observed inputs.
Time-space lower bounds against such quantum circuits were first described in [27]
for the multiple disjoint collisions problem, although they were not able to show such
a result for sorting. Similar to [27] we are able to lower bound these circuits by
identifying a single hard distribution over the inputs that applies to any set of outputs.

THEOREM 4.1. Let m < n” for some constant v and 2 < d < n™. There is a
constant C' > 0 such that the following holds: Let A be an mxn matrix over a field F that
is (g, h, c)-rigid. Then any quantum circuit using time T and space S < G(Tiﬁﬁ)glogQ d
that computes the function fa : D™ — F™ for D C F with d = |D| given by fa(x) = Az
with success probability larger than 2~° requires that T > Cmhlogd /S.

When the fixed matrix A is sufficiently rigid, for example when both g and h are
linear in n as is the case with the DFT matrix per Proposition 2.3 or a random matrix
with high probability per Proposition 2.4, this lower bound becomes Q(mnlogd)
provided that S is at most some constant times nlogd which is essentially a trivial
constraint for the problem. This bound is tightly matched by a classical query algorithm
in Proposition A.1.

This theorem follows from the following key lemma, proven in subsection 4.1, which
lets us bound the number of correct output values produced by a shallow quantum
circuit.

LEMMA 4.2. Let A be any (k, h,c)-rigid m x n matriz over a finite field F and
let fa: D" — F™ for D C F be defined by fa(x) = Ax. Then for a > 0 and for
input © sampled uniformly from D™ and any quantum circuit C with at most ah

queries to x, the probability that C produces k correct output values of fa(x) is at most
[h/(ck)]? (452() /| D|'==)F.

Note: For a < 0.0737 we have 1 — o — 2H3(«r) > 1/6 and hence the bound is at
most [h/(ck)]?|D|~¢*/6 for d > 2.

Proof of Theorem 4.1 from Lemma 4.2. Let C be a quantum circuit with T" queries
and space S that computes f4(z) with success probability larger than 275, Since h < n,
m < n" and S > log, n we only need to consider the case that T' < nrtl log,, d < n 12,

Let @ = 0.0737. We partition C into [T/(ah)] sub-circuits that each have at
most ah queries. By combining Proposition 2.5 and Lemma 4.2, we know that
each sub-circuit can produce k < g correct output values with probability at most
95 (h/(ck)-|2 d—ck/6 < p29Sq—ck/6

By assumption, we have d—¢9/6 < 2=("+6)S < p=(r+4)9-25 < j=29-25 /T gince
S >logyn, T < n"*2 and h < n. In particular, this implies that h2d—c9/6 < 2-5
so we must have T > ah by Lemma 4.2. Set & < g to be the smallest integer
such that h225d-¢k/6 < 9-5 /T. Then the probability that a sub-circuit produces k
correct output values is at most 27 /T. This gives k = [[6log,(hT) + 12S5]/(clog, d)].
We note that k is at most ¢*S/log, d for some constant ¢* > 0 since logy(hT) <
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(r+3)logyn < (r+3)S.

Taking a union bound over the sub-circuits, the probability that any of them
produces k correct output values is at most 27, Since f4 has m outputs, this means
that

[T/(ah)] (k—1) = m

Since T' > ah, we have
2Tk > amh.

Plugging in our upper bound on k we have that

2¢*TS/logy d > aomh

and hence T'- S is at least 5;2-mhlogd as claimed. ]

4.1. Success probability of small depth quantum circuits. We first give an
overview of the argument, which involves an initial uniform distribution over the inputs
x € D". This begins by decomposing the state after ¢ < ah queries into orthogonal
components based on the values of working qubits |, p, w), which also determine the
set of k output values produced. It then suffices to prove that, for any fixed set of
k outputs, any input state spanned by recording query basis elements with at most
t non-L items can agree with the k outputs only on an exponentially small (in k)
fraction of the amplitude.

If we knew which ¢t < ah input indices were queried, as we would with classical
algorithms in the analysis of [4], then things would be easy: Since the fixed matrix
A is (k, h,c) rigid, the sub-matrix of A with rows corresponding to these k outputs,
and with the > n — ah “unqueried” columns has rank at least ck, so any fixed output
can be correct with probability at most d=°* over the choice of inputs. However, the
quantum state after ¢ queries is a superposition of recording query basis states that
could involve all possible subsets of < ¢ non-_L indices which is at least (;’) possibilities.

To handle this we use the basic version of our bucketing method for recording
query basis states and find a relatively small collection of admissible buckets (whose
size will be a sufficiently small exponential in k) that allows us to run the quantum
analogue of the classical argument within each bucket. We now give the proof in detail.

Proof of Lemma 4.2. Let d = |D|. For simplicity we will assume that ¢(w)—the
output as a function of the measured value of the work register—always produces k
outputs.® Let A be a (k, h, ¢)-rigid matrix. By Proposition 2.9 after ¢ < ah queries in
the recording query oracle model, the state |¢;) is a linear combination of basis states
|i,p, w,x1,...,z,) where (z1,...,z,) € I';. It will be useful to be more explicit in our
discussion of T'y. Each element of T'; consists of an assignment y € D' for some subset
I C [n] with |I| <t and value L on all coordinates in [n] \ I. Therefore, we can write
the state as

(4.1) 60) = D Qipwry lHDw) [Y) 1L
1l i<t
yeD?!

for some ; p 1,1,y With Zi}p’w’l’y |i pw.1.y|* = 1. Thus by Proposition 2.7, the final
state of the algorithm (after ¢ < ah queries) in the non-recording query oracle setting

51f in general q(w) produces more than k outputs, we only consider its first k& outputs.
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is given by

W) =Sl =8 3 ity lispew) )y [ L) -

i,p,w
IC[n], [I|<t
yeD?!

Since S behaves as the identity on |¢;), and the |i,p,w) are orthogonal basis states,
we can rewrite this as

S g i) [SPT ST B, Ly

4,p,w IC[n], |I|<t
yeD?!

for some 3; 5., and ﬂl’p’ such that a; p w1,y = Bipaw ﬁl’p’ , Zzpw |Bipw|? =1 and
for each choice of 4, p,w, we have that >, v |,BI’p “|2 = 1. With this decomposition,
using the definition in (2 1), the success probablhty of producing k correct output
values is given by

2
118160 Hn " ipalisn,w) @ [S?” S B, um[]
4,p,w IC[n], [I|<t
yeD’
2
Z IBi,p,w |z,p,w> Y |:Hq(w)81®n Z Bj,p " | >I J*>[n]\I:| ’
ipw ICin], 1<t

yeD!

where IIy(,,) is defined as in (2.2) and is the projection of II;, onto fixed values of g(w).
Since the basis states |, p,w) are orthogonal and 3=, 8ipw|> = 1, we have

2

2 n i,p,Ww
(4-2) HHkS|¢t>H < ?;335 Hq(w)Sig) E 15 |y>1 |J—>[n]\1
w IC[n], [I|<t
yeD?!

We now fix 7, p,w and let Ay, be the submatrix of A restricted to the rows defined

by the set of the k& output values U associated with g(w). We can describe Il () as a
projection onto basis states |x1,...,x,) such that
1
Ag(w) = q(w)
L

Since the basis states [y);|L)(,),; for distinct I are orthogonal in the recording
query basis, they remain orthogonal in the standard basis after the S operator is
applied. However, the subsequent application of the Il,,) projector makes these
vectors no longer orthogonal.

To handle this, we bucket the sets I C [n] with |I| < ¢ into a small number of
buckets, By, ..., so that for each bucket B, we can bound

2

o = HHq(w)S{@” Z 51’p’ W) 1 L) a1

IeBy,yeD!
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and then we can use the triangle inequality to bound the success probability as a sum
of the .

In particular, our key observation is that if a bucket of recording query basis
states completely misses querying a fixed set of input variables that could completely
scramble the value of a set of r output values, then one cannot do better than randomly
guess those output values. More precisely, we show that the contribution to success
from that bucket of basis states has amplitude at most \/%.

LEMMA 4.3. Let U C [m] be a set of output indices and V' C [n] be a set of
input indices with |V| = |U| = r such that the submatriz Ayy is full rank. Fix
q € FY and define I, to be the projection map onto the span of the set of basis
states |x1,...,xy) with x1 ...z, € D such that Ayx = q. Then for any collection
B of sets I C [n]\'V and any quantum state 3 ;cp yepr Ny |Y) 1 |L)y we have

2
1
anslqan Z NI,y |y>1|J—>[n]\1 < o
IeB, yeD!
Proof. By definition each I € B satisfies INV = &, so

Hqs?n Z N1y 1Y) 1 ‘i>[n}\1
IeB, yeD!

:Hq81®n(|i>v® Z N,y

y>1 |l>[n]\(1uv) )
IeB, yeD!

=11, (5i®T|L>v®3i®(”T) Y. )b \(Iuw)

IeB, yeD!

1 Q(n—r
\/cﬁly%@&( by ”Ivy|y>r|¢>[nl\<1um)

IeB, yeD!

since S1(|L)) =3, cp ﬁ ly’). Now

51®(n4) Z Ny 1Y) ‘J‘>[n]\(1UV) = Z 0z |Z>n\V
IeB, yeD! z€(DU{L})In\V

for some amplitudes §, satisfying Zze(Du{J_})[“]\V 6.2 =1

For each value of z € D"\V  since the sub-matrix Ay,v is invertible, there is a
unique value y, € DV such that Ay (y. Uz) = ¢ so we get that

2

HHqS{@” Z Ny 1Y) 1 |i>[n]\1
IeB, yeD!

] £ Bwve X sla]

y'eDV ze(DU{L})n—r

- -nq[ oo > 6zlz>n\v] 2

y' €DV zeDm™—T

2

—_

2

-5
ﬂ

zED["]\V y eDV
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2

1
= Z 02 |yz)y |2 >'n,\V) = ar
H \/(F ZGD[n]\V d
since EzED["]\V |5z|2 S 1. o

Next we decompose the set of all I with |I| <t into buckets where we can apply
the above with r equal to a constant fraction of k. (This decomposition of the sets I
into buckets automatically implies a decomposition of I'; into buckets, each of which
will be a ¢’-admissible bucket for some constant ¢’ by Lemma 4.3 and the value of
r, yielding a ¢’-admissible bucket ¢-family corresponding to the basic version of our
bucketing methods as discussed in section 3.)

LEMMA 4.4. Let A be a (k,h,c)-rigid matriz and let k' = [ck]. Then for every
subset U of k rows of A, there is a collection of disjoint k'-subsets of columns from [n],
Viy..., Vi for £ = [h/K"] < [h/(ck)] and corresponding sets of rows Uy,..., Uy C U
such that for each j € [{], the k' x k" submatriz Ay, v, is full rank. (In partzcular the
ungon, W, of the sets V; has size at least h.) If c =1 then allU; = U.

Proof. Fix U € [m] with |U| = k. The following procedure constructs such a
collection, one set at a time. We maintain a subset of W columns that is the union
of the V; constructed so far. Suppose that |[W| < h. Then, by the (k, h, ¢)-rigidity of
A, the submatrlx Ay, mp\w has rank at least &’. Hence there is a &' x k" submatrix
AU]% of Ay, mp\w that has full rank £’. We now add V; to the collection of k'-sets of
columns, record its corresponding row set U;, and set W <~ W UYV;. This produces
exactly [h/k"] subsets. O

Fix the collection of sets V1, ..., V; given by Lemma 4.4. Let k¥ = |ak’|. Suppose
that V; = {i1,..., i} C [n] with ¢; <--- <. For each A € ([,f,/,]), define the set VjA
to be the subset of V; that has the k" elements of V} indexed by A removed. (That
is, iy ¢ V) iff j/ € A.) Then [V} = K —k” > ¢(1 — a)k. There are a total of
(,’://,) < 2H2(0) ¥ pogsible values of A and hence [h/k'] - 2H2(®) % gets of the form V).
These sets have two useful properties: first any subset of [n] with size at most ah must
miss some Vj)‘ and second if the entries of = corresponding to some Vj)‘ are uniformly
random, then for any set of k indices in Az, at least ¢(1 — a)k of these values are also
uniformly random.

LEMMA 4.5. Fort < ah and every I C [n] with |I| <t, there is some j < [h/k"]

and )\ € ([If,/,]) such that I C [n]\ Vj)‘.

Proof. Fix such a set I with [I| < t. Since t < ah, [y Vjl = h, and the sets
V; are disjoint, by averaging there is some set V; that has at most an « fraction
of its elements in I. Hence V; has at most k" < ok’ elements of I. Choose a set

A€ ( k,,) that contains the indices within V; of all of the elements of V; N I. Then by
construction I N Vj)‘ . a

(Lemmas 4.3 and 4.5 together give us all the ingredients we need to yield a
¢-admissible bucket ¢t-family with ¢ = d°(~®) as defined in section 3; each element
of the family is determined by a pair (j, A) as follows:) By applying Lemma 4.5 we
can associate each I C [n] with |I| <t with a pair (j,A) such that I € [n]\ V;* and
define bucket B;‘ to consist of all such sets I associated with pair (j,A).® Further,

6Note that while some sets I could be associated with multiple pairs (j, A) in the admissible
bucket family, since we only require one bucket per recording query basis element for the analysis, we
will choose only one such pair for each I.
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define a set U} C U; C [m] of the rows of Ay, with |[U}| = k" — k" such that the
submatrix Ay yx is full rank. Such a subset of rows must exist since AU], v is a full
J’hi T

rank matrix. Then let q;‘ = g(w)|y» be the portion of the assignment ¢(w) on the
J

rows of U j)‘
We are now ready to provide an upper bound on the success probability from (4.2)
using our admissible bucket family. We have

(4.3) an<w)8;®“ S B I D
IC[n], |I|<t
yeD?!

:an(w)s;mz S Y B Dy

JE[] )\6([:,,,]) IEB;‘, yeDT

2

7 SP" Z BIEY [y), L) a1

Axe() IeB}, yeD!

Applying Lemma 4.3 with r = ¥ = %", ¢ = ¢}, U = U}, V = V", and B = B}, we
have that
2
HHQf St B ) [ D < 1dE T <1/d0 0k

IeB}, yeD!

and hence using (4.3) we obtain that the success probability of producing k correct
output values,

s 60l < 2 () 0= < [ryi e gt -oo¥
= [h/K] (472(2) =)y

Without loss of generality in our desired bound we can assume that 472(®) /d(01—) < 1,
Therefore the bound still applies when we replace k' by the potentially smaller ck
which is what we needed to show. ]

2. Related time-space tradeoff and cumulative memory lower bounds.
Following the same arguments as for classical computation [4], we use Theorem 4.1 to
obtain a collection of time-space lower bounds for problems that are closely related to
matrix vector products. Our proofs are identical to their classical counterparts proven
in [4, sections 5-6] and are duplicated here for completeness. Many of these lower
bounds are tightly matched by classical query algorithms. Constructions of matching
upper bounds can be found in section A.

COROLLARY 4.6. Let F be a field and D C F such that d = |D|. Any quantum
circuit that computes the discrete Fourier transform (DFT) of vectors in D™ in time
T and space S with probability at least 27 requires T to be Q(n?log(d) /S).

Proof. Applying Theorem 4.1 with the rigidity of the DFT from Proposition 2.3
directly gives us the lower bound. ]

PROPOSITION 4.7 ([4]).  There is a constant v € (0,1/2) such that at least a
1 —|D|7Y(2/3)"™ fraction of the Toeplitz (diagonal constant) matrices over D™*™ are
(yn,yn)-rigid.
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Recall that the convolution of two vectors w = u v is wg = >
indices are reduced modulo n, where we identify n with 0.

COROLLARY 4.8. Let IF be a field and D C F such that d = |D|. Any quantum
query algorithm computing the convolution of two vectors in D™ in time T and space
S with probability at least 275 requires T to be Q(n?log(d) /9).

Proof. For simplicity assume that n is even. Let

i€n] WiVk—i where the

Up Up—1 ... U2 Ul
U7 Un ... Uz (5
_— (4 B
- -[e )
Up—2 Up-3 ... Up Up-1
Up—-1 Up—2 ... Ul Unp,

Where A, B,C and D are n/2 x n/2 submatrices. Then Uwv is the convolution between
vectors u and v. Observe that U is a Toeplitz matrix and by picking u to be a uniform
vector over D, Proposition 4.7 tells us that for sufficiently large n, there is a constant
v € (0,1/2) such that both A and B are (yn,yn/2)-rigid with probability at least
1/2. This lets us restrict our input to such choices for u and observe that the matrix
U = [A B} is (yn,yn/2)-rigid, so Theorem 4.1 gives us that computing U’v requires
T that is Q(n?log(d) /S). Since U’ is a subfunction of U, convolution also requires T
that is Q(n?log(d) /S). 0

COROLLARY 4.9. A quantum circuit that multiplies two n bit binary numbers in
time T and space S with probability at least 2=5 requires T to be Q(n?/(S1og?n)).

Proof. Let u,v be arbitrary vectors over Fy. Define the binary number

u = Oflog2 nlflun o 0[10g2 n]71u10(10g2 n]flun o O[log2 'rﬂflu1

and similarly define v’. Then observe that the product «’ - v’ contains all entries of the
convolution between u and v encoded in blocks of [log, n] bits each. By Corollary 4.8
this requires T' to be Q(n?/(Slog? n)). d

PROPOSITION 4.10 ([4]). Let A,B,C,Y € D™*™. Let B (and V) be the vectors
in D" formed by stacking the transposes of the rows of B (and Y ) into a column
vector. If D is a commutative ring, then the following conditions are equivalent:

o Y =ABC
e V=(AChB

where @ is the standard tensor (Kronecker) product.

PROPOSITION 4.11 ([4]). Let v € (0,1/2). If A and B are (yn,yn)-rigid, then
A® B is (v*n?,7?n?,~y?)-rigid.
COROLLARY 4.12. Let F be a field and D C F such that d = |D|. Any quantum

circuit that computes the product ABC' on inputs A, B,C € D™*" in time T and space
S with probability at least 2= requires T that is Q(n*log(d) /S).

Proof. We use Proposition 4.10 to view this as a matrix-vector product problem
where B is the input and ) is the output. By Proposition 2.4 there is a constant
v € (0,1/2) such that both A and C are v rigid with constant probability, so we can
assume such without increasing the expected cost by more than a constant factor.
Then Proposition 4.11 gives us that A ® C is (v2n?,v?n?, v?)-rigid and we can apply
Theorem 4.1 to get that T' must be Q(n*log(d) /S) as desired. d
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COROLLARY 4.13. Let F be a field and D CF such that d = |D|. Any quantum
circuit that computes A3 on inputs in D™*™ in time T and space S with probability at
least 275 requires T that is Q(n*log(d) /9).

Proof. Let A, B,C € D™*™. Then construct the 4n x 4n matrix

M =

OO OO

A 0 O
0 B 0
0 0 C
0 0 O

Observe that the top right n x n sub-matrix of M? is equal to the product ABC. Thus
we get a reduction to matrix-matrix-matrix product and can apply Corollary 4.12 to
get our lower bound. O

COROLLARY 4.14. Let F be a field and D C T such that d = |D|. Any quantum
circuit that computes A~ on unit upper triangular inputs in D™*™ in time T and
space S with probability at least 2=° requires T that is Q(n*log(d)/S).

Proof. Let A, B,C € D™*™. Construct the 4n x 4n matrix

I -4 0 0
0o I -B 0

M=1y o 1 -c
0o 0 0 I

where I is the n x n identity submatrix. Then observe that M ~! has the product
ABC as its top right n x n submatrix. We can again use Theorem 4.1 to get our lower
bound. 0

COROLLARY 4.15. Let F be a field and D CTF such that d = |D|. Any quantum
circuit that solves any n X n system of linear equations over D in time T and space S
with probability at least 2=° requires T that is Q(n®log(d) /S).

Proof. 1t is possible to invert a matrix by solving n systems of n linear equa-
tions. By a reduction Corollary 4.14 gives us that solving these equations requires
T that is Q(n*log(d) /S). Thus least one of these equations must require T that is
Q(nlog(d) /S) to solve. ad

In [12] the authors showed that the kinds of quantum time-space product lower
bounds we proved in this section can be extended to asymptotically equivalent lower
bounds on the stronger notion of cumulative memory complexity. We restate a
simplified version of their main theorem for quantum circuits and classical query
algorithms here.

PROPOSITION 4.16 ([12]). Let f: D™ — R™ be a function such that there exists
constant C, functions m'(n) € w(logn), h(k,n) = k*hy(n), K(n), and a distribution p
over D™ where when x ~ p the probability that - for any k < m/(n) - any quantum
circuit (or classical query algorithm) with at most h(k,n) queries to x produces k
correct output values of f(z) with probability at most C - K(n)~*. Then for any
constant ¢ > 0, any quantum circuit (or classical query algorithm) that computes f

with T queries and error ¢ < (1 — 1/(27°)) must have cumulative memory that is
Q (min ([(mhl(n))l/(l_A) log K (n)] /T2/(=2) ;! (n) 2 hy (n) log K(n))) .

Using the above result, we can extend the quantum time-space product lower bound
for matrix vector products to a matching quantum cumulative memory lower bound.
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THEOREM 4.17. Let v > 0 and ¢ € (0,1/2] be fized. If A is a (yn,vyn,c)-rigid
n X n matrix over a field F then any quantum circuit using time T and space S that
computes the function fa : D™ — F" for D CF with d = |D| given by fa(zx) = Ax
with success probability larger than 1/T requires cumulative memory that is Q(n?log d).

Proof. By Lemma 4.2 we can apply Proposition 4.16 where C' = [1/c], m/(n) = yn,
A =0, hi(n) = an, K(n) = d"/%, and p is the uniform distribution. This give us
that any quantum circuit computing f4 with T' queries and error at most 1 — 1/(27)
requires cumulative memory Q(n?logd) as desired. |

Directly applying this in place of Theorem 6.5 gives us matching cumulative (C M)
memory lower bounds for Corollary 4.6 through Corollary 4.15.

COROLLARY 4.18. Let F be a field and D C F such that d = |D|. Any quantum
circuit with inputs over D that computes the DFT or vector convolution requires C M
that is Q(n?logd). Any quantum circuit that computes the product of three matrices,
matriz cubing, or matriz inversion requires CM that is Q(n*logd). Any quantum
circuit that solves n x n systems of linear equations requires CM that is Q(n®logd).

Additionally any quantum circuit that multiplies two n bit binary numbers requires
CM that is Q(n?/log?n).

5. Quantum matrix multiplication. While many of the applications so far,
including the matrix triple product lower bound discussed in the previous section, are
derived from the matrix-vector product lower bound, our matrix multiplication lower
bound requires a separate argument using ideas from the classical lower bound for
the problem in [4]. Implementing this requires a much more subtle way of applying
our bucketing method for states that allows us to concentrate on just a subset of the
buckets containing most of the total amplitude and ignore the others. As in section 4,
our lower bounds in this section apply to a more general model of quantum circuits
that can decide which outputs they want to produce in a given layer based on the
inputs that they have queried.

Here we consider the matrix multiplication problem f(A, B) = AB where both A
and B are considered input. If we could fix a choice of A, we would be able to make
our proof somewhat simpler. However, as Abrahamson pointed out in [4], there is a
classical algorithm that can compute the function f(B) = AB for any fixed matrix A
in O(n?) queries and O(nlogd) space. Thus our lower bound requires both A and B
to be inputs to the function.

THEOREM 5.1. Let F be a field and D C F with d = |D|. Then any quantum

circuit C that uses time T and space S and computes the function f : D™’ _
given by f(A, B) = AB with success probability larger than 1/T must have T that is

Q(n3y/logd /9).

Again this theorem follows from the following key lemma, proven in subsection 5.1,
which lets us bound the number of correct output values produced by a shallow
quantum circuit.

LEMMA 5.2. Let vy € (0,1/2) and f : D™ x D" — F" for D C F with |D| = d
be defined by f(A, B) = AB. Then for any constant 8 > 0 and quantum circuit C with

at most h = Byn\/k/2 queries to input matrices A, B sampled uniformly from Dnz,
the probability that A and B are (yn,yn)-rigid and C produces k correct output values

of f(A, B) is at most 16 min(k, n)V2k (4H2(48) /q1=4B)k/4,
Note that for 8 < 0.0184 we have 1 — 48 — 2H(48) > 1/6 so the bound is at most
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16 min(k, n)V2kd—+/24,

Proof of Theorem 5.1 from Lemma 5.2. Let v € (0,1/2) be the constant given by
Proposition 2.4. By that proposition, the probability that either of two matrices A and
B chosen uniformly randomly from D™ is not (yn,yn)-rigid is at most 2d=1(2/3)m.
Let C be a quantum circuit with 7" queries and space S. Let 8 = 0.0429, d =
ID|, and set k = [48(6S + 4)/log,d]. We partition C into [T/(nyn«/k/Q)—‘ sub-
circuits that each have at most Syn+/k/2 queries. Without loss of generalities there
are at most n? such sub-circuits. By combining Proposition 2.5 with Lemma 5.2,
we know that for a uniformly random input, the probability that A and B are
(yn,yn)-rigid matrices and a fixed sub-circuit can produce k outputs is at most
16 min(k,n)m2sd_k/24 < 16kV2+254-#/24  Therefore the probability that A and
B are (yn,yn)-rigid matrices and one of the sub-circuits produces k correct output

values is at most 16kY2F25d—k/24p2, Combining this with the probability that one of
A or B is not (yn,yn)-rigid, the probability that there is a sub-circuit that correctly

produces k output values is at most 16kV2F25d=k/24p2 4 2d=1(2/3)*".

Since we can assume without loss of generality that T < n2, for sufficiently large
n, 2d=1(2/3)2" < 1/(2T) and kV2F < 2k/48 < gk/48 Plugging in our value of k and
the fact that S > log, n without loss of generality gives a probability of at most

16kY20925 4~ R/24n2 1 2471 (2/3)7" < 16254502 4 1/(2T)
<1/(2T)+1/(2T) = 1/T.

Since C must be correct with probability larger than 1/7, this implies that

(k= 1) [T/ (Byn/k72)| = n®

Plugging in our value of k£ gives us that

T is Q(n*\/logd/+/S +log T).

Since S > logyn and our bound trivially holds when T is w(n3y/logd) there is a
constant ¢ > 0 such that ¢S > log, T. So T is Q(n3\/logd/S) as desired. d

Our quantum lower bound is tightly matched by a classical query algorithm in
Proposition A.5.

5.1. The success probability of small depth quantum circuits. We first
give an overview of the argument which assumes a uniform distribution over all input
matrices A and B in D™*". Unlike the matrix-vector product proof, in addition
to the requirement of k correct output values, for success we also include the extra
condition that both matrices must be (yn,yn) rigid. As in the case of the matrix-vector
product proof, we decompose the state after t < h = Syn\/k/2 steps into orthogonal
components based on different values |i,p,w) which determines the k output values
produced, though this now can be up to quadratic in n. However, unlike that proof,
we need to use the weighted version of our bucketing method. We show that for each
such |, p,w) the total fraction of the squared amplitude for any recording query state
spanned by basis elements with at most ¢ non-_L items where the k£ output values
produced are correct is exponentially small in k.

The output values produced determine a set of rows of the matrix A and columns
of the matrix B that are relevant. For classical algorithms, where we can determine a
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set of input locations queried, the lower bound of [4] shows that either at least k/4
of the output values lie in rows where few elements of A are queried or k/4 lie in
columns where few elements of B are queried. For each of these cases (“light” rows
or “light” columns) the corresponding output values in those rows or columns are
hard to produce in that the requirement that the other matrix is rigid means that the
algorithm is exponentially unlikely in & to be correct on those entries.

In the quantum case, when viewed in the recording query basis, the state involves
a superposition over all possible assignments to subsets of indices for the relevant rows
of A and columns of B with at most ¢ non-_L entries. For convenience, we first split
these basis states depending on whether there are many outputs in light rows or many
in light columns; and then on which rows/columns those are; each determines a set
of k/4 output values to consider hard and whether to focus on matrix A or B. The
number of such possibilities is not too large so the total is not too much larger than
the maximum over all such choices. We further consider a fixed choice of the other
rigid matrix that maximizes the resulting probability that the hard outputs produced
have correct values. The number of consistent recording query basis states in each
such superposition is still enormous.

We need to apply bucketing where either A or B is fixed as a rigid matrix and
the other can be interpreted as a having a collection of light columns (or rows) such
that the output values are the results of a matrix-vector products involving vectors
with few queries. However, repeatedly applying the basic bucketing method for basis
states we used for matrix-vector products fails because the total number of buckets
would be too large since it would end up being the product over the number of choices
for each row or column.

Instead, we show that among these potential buckets we can find a small number
of admissible buckets that together capture a large portion of the amplitude associated
with the state, yielding an ¢-reduction scheme of admissible buckets that lets us derive
the final lower bound. We now give the details of this argument.

Proof of Lemma 5.2. Let C' = AB, Tl,igiq(a) (and ILgq(py) be the projection onto
inputs where A (and B) are (yn, yn)-rigid matrices, and define Ilyigiq = Hyigia allvigia B
Assume that g(w) — the output as a function of the measured value of the work
register — produces exactly k outputs; we ignore anything it produces after the first k.
We will use [A] to denote the set of indices of elements in A and likewise for [B] and
[C]. By Proposition 2.9, after ¢ < h queries in the recording query basis, the state |¢;)
is a linear combination of basis states |i,p,w, z1,...,2,) where (z1,...,2,) € [';. As
in our analysis of the case of matrix-vector products, it will be necessary to be more
explicit in our discussion of I';. Each element of 'y consists of an assignment z € DF
and y € DF for some subsets E C [A] and F C [B] with |E| + |F| < t and value L on
all coordinates in [A] \ E and [B] \ F. Therefore, our state can be written as

|pr) = Z i pw,B,Fay |1 P w) |2) g |J->[A]\E V) p ‘J—>[B]\F
BClAl FC(B)
|E|+|F|<t
zeD? yeD¥
for some o p . B F ey With Zi,p,w,E,F@,y | pow B Fayl® = 1. We first apply an

analogous series of observations and decompositions to those that allowed us to derive
(4.2) from (4.1) in the case of matrix-vector product. By Proposition 2.7, we note that
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the final state of the algorithm in the standard oracle setting is given by

o) =Sl6e) =8 D Qipwm Ry i w) @) g L) e ¥)p L) g e

i,p,w
EC[A],FC[B]
|E|+|F|<t
IGDE,yGDF
Because S behaves as the identity on |¢;), and each distinct choice of |i,p,w) gives
an orthogonal basis state, this equals

. n2 Wy
Zﬂz—,p,wu,p,m@[S;@? S B s D s 19) e L) e

i,p,w EC[A],FC[B]
|E|+|F|<t
wEDE,yEDF

for some f; ;. and /J’blpl’;z o such that 37, |Bipwl> =1 and Y EFay |ﬁhlpl’,‘,][‘,’y|2 =1
for each i, p,w. Now the probablhty over the choices of the 1nput matrices and the
result of the quantum algorithm making ¢ queries that the matrices A and B are both
(yn,yn)-rigid and the algorithm produces k correct output values from C' = AB is

HH;CHrigidS |+ ) H2 Expanding this using the value of S |¢;) yields

2

. on? W
‘ I Iyigia Z Bipyw |1, 0, w {5@ Z /BEpFr 1P e L ane W) F |J->[B]\F:|
i,p,W EC[A],FC[B]
[E|+|FI<t
zeD? yeDF

Factoring out the coefficients related to choices of |, p, w) and replacing II;, with II,,,

for the corresponding w yields that HHkHrigidS | H2 is

2 2n? D, w
Z |6i,p,w| ’ |: q(w) r1g1d5® Z /BEpr;y >E |J—>[A]\E |y>F |J-> \F:l
4,p,w EC[A],FC[B]
|E|+|F|<t
zeD¥ yeDF

2

Next, since ), pow |ﬁi’p’w|2 = 1, this value is a convex combination of the squared
norm terms. Thus, the probability that both the input matrices are rigid and the

2
rigidS |00) ||

is at most of the

largest squared norm term,
2
Hq(w)HrlgldS Z ﬂjEpwa Y VB |J—>[A N\E lv) P |J—>[B]\F
EC[A],FC[B]
|E|+|F|<t
zeD¥ yeDF

(5.1) max
i.pw

For the rest of the proof we fix an 4, p, w to achieve the maximum value in (5.1)
and prove an upper bound on the resulting probability. This fixes the output values
q(w); we write G C [C] with |G| = k for the set of indices of the outputs given by
g(w). To keep notations simpler in the remainder of the proof we observe that (5.1) is
upper bounded by the maximum of
2

n2
(5.2) Hﬂq(wﬂrigidsim > Bereyl®) gl e 9 D s,
EC[A]LFC[B]
|E],|F|<t
zeD¥ yeD¥
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over all B puy With X p oo [BE Feyl® = 1, all sets G C [C] with |G| = k and all
assignments ¢(G) to G.

We will split the sum in (5.2) over the different sets E and F' of queried input
indices depending on how they relate to the set of output indices given by G. Let r(G)
be the set of rows containing elements of G' and ¢(G) be the set of columns containing
elements of G.”

Recall our bound h = Syn+/k/2 on the number of queries. We define a light row
of E to be an element of r(G) that contains at most Syn elements of E and define
a light column of F to be an element of ¢(G) that contains at most Syn elements of
F. Since |E| 4 |F| <t < Byn\/k/2 we have < \/k/2 rows of E in r(G) and < /k/2
columns of F' in ¢(G) that are not light. We define L(F) C r(G), to be the set of
light rows of E and L'(F) C ¢(G) to be the set of light columns of F. Therefore
H@@,7) e G|i ¢ LE), j7¢ L(F)} < k/2 so at least k/2 elements of G are in light
rows of F or in light columns of F'. Therefore for every pair (F, F) at least one of the sets
of outputs G} ) = {(¢',j') € G | i € L(E)} or GG,y = {(¢',5') € G | j € L'(F)}
has size > k/4.

Let £ be the set of all E C [A] with |E| < ¢ such that G has at least k/4 outputs
in light rows and F be the set of all F' C [B] with |F| < t such that G has at least
k/4 outputs in light columns. We separately bound the contribution to (5.2) from
pairs (E,F) with E € £ or F € F. The analyses of the two cases are completely
symmetric up to matrix transposition. It will be convenient to focus on the case F' € F
representing basis states where there are many outputs of G in light columns and
compute an upper bound on

2

2
63 |MoMawast™ 3 ¥ Srrmylods Dyas e Lione
EC[A] FEF
|E|<t yeD¥
zeD¥

Basis states where E € £ give exactly the same upper bound as (5.3) by applying the
argument to the transposed product BT AT and corresponding transposed sets F7,
ET, and GT. Hence, the quantity in (5.2) is at most 4 times that of (5.3).

To upper bound (5.3), we first remove the projection operator Il,igq p from
Hq(G)Hrigid = Hq(G)Hrigid AHrigid B to get Hq(G)Hrigid 4. We then rewrite this com-
bined projection operator as Il (g)Iligia 4 = doa (yn,ym)- II4® H;‘l(c) where II 4 is
the projection onto the specific matrix A and for each A, H(‘;‘(G) is the projection onto

rigid

the choices for matrix B such that C = AB agrees with ¢(w). We therefore obtain
that (5.3) is at most

2

2
(5.4) > Ma@Mye)SE*™ > Y Brray 12) 5 L) pap e 19 7 L) 51\ P
A (yn,yn)-rigid EC[A] FeEF
|E|<t yeD¥
zeD¥
2 ’ ?
= > A @TyeSE™) > > BaBiy 1A 19) p 1L e p
A (yn,yn)-rigid A’e(DuU{L})lAl FED];
ye

"We will think of 7(G) and ¢(G) as being subsets of indices in [n] that correspond to rows in A
and columns of B, respectively, that are relevant for the outputs in G.
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for some 34 and BFy such that 3° 4 ¢ pugiyynz B> =1and Yper cpr \ﬂF7y|2
for each A’. Applying projector I14 through this term gives that (5.4) equals

2

(5.5) Z Ba |A>[A] & [H?(G)S?n Z 5?,7, 1Y) |J->[B]\F]
A (yn,yn)-rigid FeF
|F|<t
yeD¥

Since H(;‘(G) only projects onto the [B] input registers, each distinct choice of |A>[ Al
gives orthogonal states so (5.5) equals

2

(5.6) > 1BaP

A (yn,yn)-rigid

’ q(G)S®n Z 5Fy 1Y) |J—>

FeF

|FI<t
yeD¥
, 2
< max 4 . s&n BA |y)p|L .
P | L er; Fo 9 F L) s F
yeD¥

We fix a (yn,yn)-rigid matrix A that maximizes (5.6) and partition the set F
based on the set £'(F) which contains all but at most L k/ 2J columns in ¢(G).

Therefore we can rewrite (5.6) as

2

n2
(5.7) | T eSS e W
() £(F) (e
1< | v/k72] JeDF

Since |¢(G)| < min(k,n) we can upper bound (5.7) by

. ’I'L2
(5.8) mln(k:,n)m max Hl‘[(‘;‘(G)Sl® Z ﬁﬁ’y W) 1D s\ F

HCe(G) FeF
[H|< [\/k/2j L' (F)=c(G)\H
yeD¥

We fix the set H achieving the maximum value in (5.8), which fixes the value of
L'(F)=c¢(G)\ H. This fixes the set GZ/(ry of elements in G that are in light columns
of F' (equivalently, not in H) which, since F' € F, contains at least k/4 elements of G.
Let G’ be a fixed subset of k/4 of the elements of G“’L,(F). By construction we have
¢(G") C L/(F). By only requiring that the outputs in G’ are correct, we therefore can
upper bound the probability that both the input matrices are rigid and the quantum
algorithm produces k correct outputs, ||HkHrigidS |d¢) H27 by the maximum value of

2

(5.9) 4min(k, n)m q(G,)S " Z Bry V) r |i> B\F
FC[B]
o(G") c L (F)
yeD”

over all G’ C [C] with |G'| = k/4 and S, with 35 |B%,y|2 =
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For each j € ¢(G’), let k; be the number of elements of G’ in column j. Our overall
strategy is to consider the j € ¢(G’) one by one, and show that the total amplitude
on states where these k; outputs are correct conditioned on the success for previous
values of j is of the form d—%% for some fixed constant § > 0. These are k; outputs
of the matrix-vector product Ay’ where 37 is the j-th column of B and the fact that
c(G") C L'(F) implies that F has made at most Byn queries to y7. This is very similar
to the situation with the matrix-vector problem from Lemma 4.2. In analogy with
Lemma 4.2, define U7 to be the set of k; rows containing outputs of G’ in column j.

Applying Lemma 4.4 with ¢ = 1, for each j € ¢(G’) there is a collection Vlj7 R VZJJ
of £; = [yn/k;] kj-subsets of [n] such that the k; x k; sub-matrix A ;;,,; has full rank.

Using the ideas of Lemma 4.2 we could bucket the possible basis étates into one
bucket for each large subset of the set associated with the tuple (Vzi )jeq(cry using
Lemmas 4.3 and 4.4 and bound each bucket separately. However, unlike its use in the
proof of Lemma 4.2, the value of many of the k; can be very small, as low as 1, in
which case the upper bounds using Lemmas 4.3 and 4.4 would be meaningless.

Instead, we need a stronger argument that depends on the amplitudes 37, in (5.9).

The large subsets of the sets associated with tuples (Vé )ieq(cry Yield candidate buckets
but there are too many of them to be used. However, we will see in the following
lemma that a relatively small collection of them can capture all but a constant fraction
of the total amplitude given by the B}’,y' We will then see, in Corollary 5.4, how this
can be applied inductively with the portion of the total amplitude that is left over to
yield a good upper bound on the total probability of producing the output values in
q(G’"), which is what we need to prove. (In the terminology of section 3, Lemma 5.3
describes an t-reduction scheme of admissible buckets for ¢(G’), deriving some of
its implications in parallel with its construction. On the other hand, Corollary 5.4
describes how that yields the overall bound; this is essentially a combination of the

ideas of Lemmas 3.5 and 3.7.)

LEMMA 5.3. Let G' C [C] with |G'| = k/4 and F' be a set of F C [B] such that
o(G") C LI(F). Suppose that 3" pc i ycpr [0ry|> =1 for some 0. Define a = 45.
Then there is an F" C F' and coefficients 6%, where 3 pczn e pr 05,17 =1 and

n? 2
(5.10) ||H:14(G’)Sl® Z OFy lY) P ‘J->[B]\FH
FeF'
yeD¥

21+H2(a)k/2 1 A 2 2
®
< o e ST Y2 Sy e 1D mp el

FeF”
yeD¥

Proof. We first recall the definitions in our discussion preceding the lemma state-
ment. For each j € ¢(G’), define U7 to be the set of row indices of G’ in column j and
let k; = |U;|. Define ¢; = [yn/k;], apply Lemma 4.4 for each j, and let V7, .. .,ij
be the collection of disjoint subsets of [n] of size k; found for each j such that each
kj x kj sub-matrix A, Vi has full rank.

For each F € F' and i € ¢(G’), define F7 to be the set of row indices of elements
of F in column j; since ¢(G’") C L'(F), we have |F7| < Byn. For each i € [¢{;] define

T= Y eyl 1F VY]
FeF', yeDF

m
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Since Y- p, [0Fy* = 1, m? can be viewed as the expected size of the overlap between
the recorded queries in the j-th column of the matrix B and each Vj Since for each
7, the sets VJ are disjoint and |F7| < Byn we have Z el m < Byn. Therefore, for
each j, we have some index i; € [¢;] such that mjj < an/fj < Bk;.

Since 3. ki = |G'| = k/4, the expected topal overlap between the recorded
queries in the columns of G’ and the chosen sets sz for those columns is mfj <
>_; Bkj = Bk/4. Define F” to be the set of I € F’ such that >, |F7 N Vzg\ > ok/4 =
Bk. By Markov’s inequality we have

md
(5.11) S loryl < Eﬂﬂk Y < 1/4.

FeF", yeDF

We split our analysis for F into two parts due to sets F' in F” and F'\ F”, respectively.
We begin with ' € F”. Write k = Y ez ,epr |6 y|* < 1/4. For F € F",
define 0%, = #(Lvy Then 3 pern yepr |05, > =1 and

2

(5.12) ‘

a(cr )3®n Z Ory 1Y) L) 5
FeF”
yeD¥

2
Q(G')S " Z 5Fy F|J->[B]\F

FeF”
yeD¥
1], 2
< 2| MatenST 30 Syl L) sy
FeF”
yeD¥

We now consider 7'\ 7. By definition, for ' € "\ F”, we have > |F7 OVZi| <
ak/4. By definition we have }, |ij| = >_;kj = k/4 so F must miss more than
(1 — a)k/4 elements of the set V = U](VZ x {j}) of size k/4. For each subset V' of
V of size k/4 — |ak/4] we define a bucket By~ that contains sets F' that must miss

the elements of V' and assign each F' € 7'\ F” to a unique bucket in an arbitrary
fixed way. There are at most 2H72(®)¥/4 guch buckets. Then

2
2
HQL‘(G/)SFH Z OFy [Y) p |J—>[B]\F

(5.13) ‘
FeF\F"
yeD¥
, 2
(X |mest S sestie o)
V'V FeBy
|V'|=k/4—|ak/4] yeD¥

< gl k/z K7 ‘ fenSE D Sr 9)e [ D)s,

V'cv FeBy
V' |=k/4—|ak/4] yeDF
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where we first used the triangle inequality followed by Jensen’s inequality. (5.13) can
be rewritten as
2

(.14) 2k Y ” AenSE (L S bry ) 1L mp v
V’gv FGBV/
|V |=k/4—|ak/4] yeD”

Now, applying the S®”2 operator in (5.14) will convert the |L),, to a uniform
superposition of all [/, for all 5’ € DV and convert ZFGBW 5ry 1Y) 7 L) 1\ (Puv
yeD¥
to some superposition of |y”) € DBV with amplitudes some dy+ 4 such that
Sy v g2 = > FeBy, yeDF |6Fy|?. Therefore, we can rewrite (5.14) as

(5.15) 2fa(edk/z K" ‘Hg‘(g,[ > le } > vy W sp

v'cv y'eDV’ y' €D\’
[V'|=k/4=|ak/4]

2

We now consider the application of H:;‘(G,). Let Vj' C Vzi be the set of row indices

in column j of V' C [B] and consider the corresponding set of columns in A. Since
AUJV] has full rank, there is a subset Ul C U7 with |U]| = [V/| so that AUJV/ also

has full rank. Now define Gj € G" to be Uco(q)(Uj x {j}) which has size [V |
For each j, the outputs in Uj x {j } C [C] can be expressed as the matrix-vector
product AU({ viYy, + M for some [V]| x [V]| matrix M’ defined by the product of the

Ul x ([n] \ V) submatrix of the fixed matrix A and yf v Since AU]-V, is full rank,

for each value of M’ given by y[ v there is precisely one value of yv, that will yield
the output values ¢(U; x {j }). Therefore, puttlng the properties for the columns of
¢(G") together, there is precisely one value 3’ € DV’ that will yield the output values
a(Gp)-

(In the terminology of section 3, this says that each of the 2/2()%/4 buckets By
corresponds to a c-admissible bucket for ¢(G’) with ¢ = d(*=®)/%, (5.11) means that
the squared amplitude of the projection on the set F” corresponding to recording
query basis states not associated with these buckets has total squared amplitude at
most 1/4 and hence total amplitude at most 1/2. Thus, this construction produces a
t-reduction scheme of c-admissible buckets with size ¢ = 2H2(®)k/4 ) Tt follows that
(5.15) is at most

(5.16) 2M(k/2 N7 ‘HQ(G,){
V'Cv

|V'|=k/4—|ak/4]

1
Z W\y ] Z ovry |y B\V’

yleDV’ ’UHGD n]\V’/

2
_ oHa(a) k/2

y) [B\V’

HW 2 vy

V cv g’ €DI\V/
|V'|=k/4—ak/4]

1
LD DI SO

V’QV y//eD[n]\v’
|V'|=k/4—|ak/4]

o 1
= 2H2( )k/2 Z dlv/l Z |5F,y|2

V/cv FEBy/,yeDF
|V'|=k/4—|ak/4]
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1
H k
-9 2(0&)/2d‘V’| 2: MRyP
FEeF\F" yeDF

< 2H2(a) k/2/d(1—a) k/4

where the last equality follows since the buckets By partition F'\ F".
We now combine the contributions from F” and F’ \ F”. Applying Jensen’s
inequality together with the bounds in (5.12) and (5.16) we obtain that

HH;X(G’)SI@)# Z Ory [Y)p [L) \FH
FeF’
yeD¥

F |J— \FH + ||Hq(G’ S?nz Z 5F,y |y>F ‘J—>[B]\FH2
Fe.F’\}‘” FeF”
yeDF yeDF
21+H2(oz) k/2 1 2
< e IMaanSE™ D2 Oy 1) 1)y snell”

Fef//
yeD”

<2 {an(G )S®

as required. 0

COROLLARY 5.4. Let G’ C [C] with |G'| = k/4, F' be a set of F C [B] such that
o(G") CL(F), and Y peri yepr |6Fy|%> =1 for some §p,,. Then

n? 2 ) _
g SE™ Y dmy l9)p | L) pl|” < 25129 R2 /g0 =28 kA,

FeF'
yeD”

Proof. Let M be the maximum value of
n? 2
[T en SE Z 57y 1Y) e | L) s r |
FeF’, yeDF

over all choices of 7’ and 0, with the required properties. This corollary follows
from Lemma 5.3 by observing that the right-hand term in (5.10) multiplied by 1/2 is
also upper bounded by M and hence M < 2'+H2(48)k/2 jq(1=48)k/4 4 pNr/9. 0

Finally, plugging the bound from Corollary 5.4 into (5.9), we obtain that the
probability that A and B are both (vyn,yn)-rigid and C produces k correct output

rigidS |dt) 2, is at most
Hy(48)\ #/4
. 2k 4
16 min(k,n)" <d(1_4m>

as desired. O

2. Related time-space tradeoff and cumulative memory lower bounds.
Now we use Theorem 5.1 to prove some related quantum linear algebra lower bounds.
Constructions of matching upper bounds can be found in section A.

COROLLARY 5.5. Let F be a field and D C F with d = |D|. If C is a quantum

circuit that computes the function f : D" — F" where f(A) = A2 on all upper
triangular inputs in time T and space S with success probability at least 1/T, then T

must be Q(n3y/logd /S).
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Proof. Let A,B € D™ and construct the 3n x 3n matrix

M =

oo o
S O

0
B
0

Since the top right n x n sub-matrix of M? is equal to the product AB, we get a
reduction from matrix multiplication and can apply Theorem 5.1 to derive the lower
bound. ]

Using Proposition 4.16 we can also bound the cumulative memory complexity for
these problems.

COROLLARY 5.6. Let F be a field and D C F with d = |D|. If C is a quantum
circuit that computes the function f : D’y given by f(A,B) = AB or the

function g : D" — given by f(A) = A2, then C must have cumulative memory
complexity Q(n®log(d) /T).

Proof. For f, we apply Proposition 4.16 with Lemma 5.2 where m’ is ©(n?), A is
1/2, hi(n) is ©(n), K(n) = d~'/*8, C' = 16. This gives us that the cumulative memory
complexity is Q(n%log(d) /T). Using the same reduction as in Corollary 5.5, this same
lower bound applies to computing g. 0

6. Quantum tradeoffs for Boolean matrix operations. In this section we
focus on Boolean matrix operations, which use (AN D, OR) inner product of vectors
rather than the usual (4, X) inner product. We denote this Boolean inner product of
vectors u and v by u e v and extend this notation to Boolean matrix-vector product
and Boolean matrix multiplication. For u,v € {0,1}", wev = 1 if and only if the
subsets of [n] encoded by u and v intersect, so the problems of computing Boolean
matrix multiplication and Boolean matrix-vector product can be seen as computing
many correlated copies of the set disjointness problem.

6.1. Tradeoffs for Boolean matrix multiplication. Unlike what we have
shown for algebraic problems, as noted in [31], quantum algorithms for Boolean
matrix multiplication have better time-space tradeoff properties than their classical
counterparts.

PROPOSITION 6.1. For any ¢ > 0, there are quantum circuits computing n X n
Boolean matriz multiplication A e B with error at most n~¢ using space O(logn) and
a number of queries T that is O(n?%logn).

Proof. Fix ¢ > 0. Each of the n? entries in the product is a disjointness function
of length n that can be computed with error at most n=¢~2 and space O(logn) using
Grover’s algorithm in time O(y/nlogn) for error at most n™=¢ overall. d

This is in contrast to the following result of Abrahamson which shows that
classical algorithms as fast as this quantum algorithm require space Q(n°-%) rather
than O(logn).

PROPOSITION 6.2 ([3]). There is a probability distribution on input matrices and
constants 0 < ¢1 < co under which the best classical algorithms (branching programs)
for Boolean matriz multiplication A e B using time T and space S require that

3.5 < 25
T.9 s O(n*°) for T <ein
O(n3?)  for T > con®?®.
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For quantum circuits, Klauck, Spalek, and de Wolf [31] proved the following time-
space tradeoff lower bound which proves that the quantum algorithm in Proposition 6.1
is nearly optimal when the space S is O(logn).

PROPOSITION 6.3 ([31]). Any bounded error quantum circuit that computes the
n X n Boolean matrixz multiplication A @ B with T queries and space S requires T to
be Q(n%?/59-2).

A key difference between the methods used in Abrahamson’s bounds and our
results for linear algebra versus those in this proof is that we require that the set of
output values produced in each part of the computation is fixed independent of the
input. (See our discussion of such output-oblivious computation in subsection 2.1.)
Such an assumption was essential for the quantum time-space lower bounds in [31, 7],
although the bound for multiple disjoint collision pairs in [27] and our results in
sections 4 and 5 apply to quantum query algorithms without such a restriction on
output production. Fixing the output values produced in each part of the computation
allows one to go beyond using a single hard distribution on inputs, and instead choose
hard distributions for each part of the computation depending on the target outputs.
To give a sense of how this works we sketch the lower bound method of [31] for Boolean
matrix multiplication, which relies on a strong direct product lemma for the function
ORF (i.e. k independent copies of the OR function each on inputs of size n):

PROPOSITION 6.4 (Strong Direct Product Theorem for ORE [31]). There are
positive constants € and 7y such that the following hold:
(a) Any randomized algorithm making at most ekn queries has success probability at
most 277 in computing ORE.
(b) Any quantum algorithm making at most ekv/n queries has success probability at
most 277 in computing ORE.

Proof sketch for Proposition 6.3. For any integer k < n/2, the function O]%’fn/,CJ
can be embedded in any set E C [n] x [n] of k outputs of the n x n Boolean matrix
product A e B as follows: Begin by dividing [n] into k blocks b1, ..., by each of size
|n/k] (together with at most k — 1 other elements) and associate each (i, 7) € E, with
a distinct index ¢ = £(i,j) € [k]. For each (i,7) € E, for £ = {(i,j) set every entry
in A;p, to 1 and set the vector of inputs in By, ; to the /-th block of the input to
Olen/kJ. Set all other bits in A and B to 0. It is easy to see that the k outputs
indexed by F will be the outputs for k disjoint OR functions on |n/k| bits.

Without loss of generality one can assume that the space bound S is at most
an for some small constant « > 0 since the number of queries must be Q(n?) in the
worst case®. Choose k = ¢S for some suitably large constant ¢ that depends on the
constant + in Proposition 6.4. Begin by slicing the circuit into layers of ev/kn queries
each. There are ©(T/v/kn) such layers. By Proposition 6.4 and the embedding, any
circuit of depth evkn = ek+/n/k queries can produce k correct output values with
probability only 2~7* for some > 0. This is the same depth as each of the layers but
each layer also gets an S qubit input-dependent state to begin. By Proposition 2.5,
the probability that the resulting layer can produce k correct output values is at most
29277F which is at most 27° if the constant c used in defining & is sufficiently large.

Therefore, the total number of correct output values that can be produced with
probability larger than 25 must be O(T/v/kn) - k which is O(T'\/S/n). On the other

8Note that this is not completely obvious since quantum algorithms for some problems may have
a sublinear number of queries.
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hand this number of outputs produced must be at least n2. It follows that 7 must be

Q(n*°/VS). 0
Our improved lower bound.

THEOREM 6.5. Any quantum circuit computing nxXn Boolean matriz multiplication
A e B with T queries and space S and success probability more than 2~° must have T

that is Q(n>°/S1/4).

Though the form of our lower bound may seem somewhat unusual, both the
exponent of n and that of .S are optimal: The algorithm of Proposition 6.1 shows that
exponent of n is optimal since there is only a gap of O(log®* n) for space O(logn).
In our quantum query model, at the other end of the scale, an algorithm with space
3n? can query and completely remember both matrices in 2n? time and 2n? space,
after which a single global unitary transformation will produce the n? bits of output
needed in the remaining n? qubits of working memory; hence the exponent of 1/4 on
S cannot be reduced.

Theorem 6.5 follows from the following key lemma which improves on the corre-
sponding bound in [31] by a factor of ©(k'/4).

LEMMA 6.6. There are constants €,y > 0 such that the following holds. Let
k < n?/100 be an integer. For any quantum circuit C with at most ek3/*n'/? queries
to x, the probability that C produces k correct output values of n x n Boolean matrix
multiplication A @ B is at most 277,

We first see how this lemma suffices for the theorem:

Proof of Theorem 6.5 via Lemma 6.6. Since there are n? outputs, it seems that
T > n? queries are required, but that isn’t quite obvious. Nonetheless, we can, for
example, derive a T = Q(n?) lower bound by applying Lemma 6.6 with k = n?/101
which shows that a circuit with at most some 8n? queries can only achieve exponentially
small success probability for producing a small fraction of the output. Therefore without
loss of generality we can assume that VS < an for some arbitrarily small constant
a > 0. Let € and 7 be the constants from Lemma 6.6. Let ¢ = 2/ and define k = ¢S.
Therefore for v < 1/(104/c) we obtain that 5v/k = 5v/¢S < n/2. By Lemma 6.6, since
k < n?/100, any quantum query algorithm with at most ek3/4n1/2 queries has success
probability at most 2=7% = 2725 of producing k correct output values.

We prove the contrapositive of the theorem statement: Suppose that T <
en?P/(cS)V/* = en?P /k'/%. When we divide C into layers with ek/*n'/? quantum
queries each, there are at most n?/k layers. Since there are a total of n? outputs, there
must be some layer ¢ during which at least k outputs are produced. Let E be the set
of the first k£ outputs produced in layer 7. By the argument above since the space is
at most S, by Proposition 2.5 the probability that these k outputs are correct given
the S qubits of input-dependent initial state at the beginning of layer 7 is at most
29 times larger than that of a circuit without them and the same number of queries,
which is at most 2° - 2725 = 2= which is what we needed to show. O

The main idea behind the proof of this key lemma is an improved method for
embedding the direct product of OR functions into outputs of the Boolean matrix
multiplication problem; this uses the following definition of an L-coloring of subsets of
[n] x [n].

DEFINITION 6.7. For E C [n] X [n] an L-coloring of E is a map x : E — [L] such
that
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F1G. 2. An ezample of a valid 3-coloring (as in Definition 6.7), where the pink and green squares
on the right matriz correspond to the colored outputs. For the left two matrices, the black squares are
fized to the input 1 while the white square are fized to the input 0. The pink and green squares in the
left two matrices encode an input to ORi whose outputs are the colored entries of the right matriz.

e within each color class either all rows are distinct or all columns are distinct,
and
e for each color £ there is a rectangle given by sets Ry C [n] of rows and Cy C [n)
of columns such that the set of points of color £ is precisely E N (Ry x Cy).
(Note that the rectangles Ry x Cy may overlap, but their overlap must not contain any
points in E, see Figure 2.)
We say that a rectangle R x C € [n] X [n] is colorable iff EN (R x C) either has
all its elements in different rows or all its elements in different columns.

The motivation for this definition is given by the following lemma.

LEMMA 6.8. Let E C [n] X [n] with |E| =k and L be an integer with L < n/2. If
E has an L-coloring then OR’ER/L is a sub-function of the function that produces the
k outputs of A e B indexed by E for n x n Boolean matrices A and B.

Proof. Write E = szlEg where Ej is the set of (,7) in E in color class £. We
now divide [n] into L disjoint blocks by,...,by, of at least [n/L| > 2 elements each.
Given the coloring and division into blocks, we define a partial assignment to the
matrices A and B as follows:

e If color class ¢ consists of points that do not share a column, for each (4, j) € Ep,
we set all entries of A4;, to 1 and leave all entries of By, ; unset.

e If color class ¢ consists of points that do not share a row, for each (i,5) € Ey,
we set all entries of By, j to 1 and leave all the entries of A; 5, unset.

e All entries of A and B that are not defined by the above two cases are set to
0.

In particular, this means that if Fy does not contain any element of the form (4, -)
then the submatrix A;, is all 0 and if £, does not contain any element of the form
(+,7) then the submatrix By, ; is all 0.

It remains to show that the outputs in E of this matrix product are k disjoint
ORs on at least [n/L] bits each.

Observe that if the color of (i, 7) is ¢, there cannot be another color ¢’ # ¢ and
i £, j' # j such that (i,5"), (', 7) € E both have color ¢, as this would violate the
rectangle condition for color ¢'. This implies that either all entries of A;,, are 0 or all
entries of By, ; are 0 for all £ # (. Therefore, assuming that (7, ) is colored ¢, the
(4,7) entry of the product must equal A4;;, ® By, ;.

If color class Ey consists of points that do not share a column then the output for
each (i,j) € Ey is the OR of the > |n/L| unrestricted input bits of By, ;; the inputs
for different (4, j) are disjoint since no two points of E; share a column. The analogous
property holds for each color class Fy whose points do not share rows. In that case,
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each output (¢,7) € Ey is the OR of > |n/L| unrestricted input bits of A4, ;, and input
bits of A; 3, are disjoint from each other. Finally, the disjointness of the inputs to the
OR functions associated with different color classes is inherited from the disjointness
of by,...,br, and the lemma follows since |E| = k. d

The lower bound of [31] in Proposition 6.3 embedded OR’fn /k) into any set E of k
outputs of A e B. Their argument corresponds to the trivial k-coloring that assigns
each element of F to its own color class.

DEFINITION 6.9. For integer k > 0 define Lo (k) to be the minimum number of
colors L such that for all subsets E C [n] x [n] with |E| < k, there is an L-coloring of
a subset E' C E with |E'| > a|E|.

LEMMA 6.10. There are constants c¢,c’ > 0 such that the following holds. Let
a >0 and k be an integer such that L, (k) < n/2. For any quantum circuit C with
at most 019111/2/[/&(/{)1/2 queries to x, the probability that C produces k correct output
values of n x n Boolean matriz product A @ B is at most g—c'ak

Proof. Let E be any fixed set of k output positions in Ae B. We show that for each
fixed value of E the probability that C can correctly guess the output values at these
indices is exponentially small in k. Let L < L, (k) be such that there is an L-coloring
of a subset £/ C E with |E'| > «a|F|. By Lemma 6.8, OR[zIﬁLJ is a sub-function
of the [ak] outputs indexed by the set E'. Since L < n/2, |n/L| > 2n/(3L) and
V/[n/L] > 4y/n/L/5. Choose ¢ = 4ear/5 and ¢’ =  for € and v given in Proposition 6.4.
By that proposition, the probability that C produces the values of these k outputs
correctly is at most the probability that C produces the [ak] outputs in E’ correctly
which is 277Tek < 2-¢ak, O

Then Lemma 6.6 is an immediate corollary of Lemma 6.10 and the following
bound on Ly 5(k).

LeEMMA 6.11 (Coloring Lemma®). Ly /5(k) < 2V6k < 5Vk.

Proof. Without loss of generality, F is contained in a grid with side lengths at
least n > 2v/6k, as otherwise we could just use a single color for each row (or column).
For a given subset A C [n] or rows or columns, we use A to denote [n] \ A.

Our strategy is as follows: for some constant ¢ to be determined we show that
either

1. there is a row containing at least ¢v/k points of E, or
2. there is a rectangle R x C such that there are at least ¢v/k points in the
rectangle, all of which can be colored with a single color. Moreover, in this
case, we show that (R x O)NE| <|(Rx C)NE)|.
We now argue why the above two conditions are enough to prove that Ly /5 (k) < %\/E

If we colored a single row or column, then we can inductively color the remaining
points of E' C E outside that row/column with no issue. However, if we colored
the points in R x C, inductively coloring the remaining points could cause an issue
because of the rectangle requirement for colors. To address this, we discard the points
of (R x C)N E and proceed inductively on E’ :== E N ([n] x C). At the end of the
procedure, since we always color at least the number of points we discard, we will have
discarded at most k/2 points, as desired.

9In a preliminary version of this paper [13] there was an error in this lemma, which claimed to
show that Lq(k) < 2v/6k. We thank the anonymous reviewers for asking the question that led to us
find and address this error.
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(o J

Fic. 3. Visualization of a single iteration of Algorithm 6.1.

It remains to show that this such a coloring would always use at most %\/E
colors. We prove this using induction. Indeed, applying induction to color at least
1/2 of the remaining k' < k — ¢V'k elements of E’ in [n] x C' will require at most

% VE < % Vk—cvk < %\/E(l — 2\C/E) = %\/E— 1 colors. It follows that at most %\/E

colors are needed to color at least 1/2 the points in E, as required.
We now show that we can execute this strategy with the constant ¢ = 1/v/6, which
will prove the lemma. That is, we show how to find either a row containing at least
k/6 points of E or a colorable rectangle R x C' with at least \/k/6 points of E such
that [EN(Rx C)| < |EN (R x C)|.
For any column j we write E7 for the set of 7 such that (,) € E. Build R x C in
the following way:!?

Algorithm 6.1 Finding a colorable rectangle with many points.
: Initialize R+ &; C + &; D+ &
while there is a j such that |E7 \ (RUD)| > 2|E’| do
C+ CU{j}
D+ DU(RNEY)
R+ (R\ E/)U(E7\ D)
end while
return R x C

First, observe that at the end of the procedure (and indeed at the end of every
iteration) the rectangle R x C contains exactly one element of E in every row, every
row of D x C contains at least two elements of F, and there are no elements of F in
(RUD) x C — see Figure 3 for a visualization of these observations.

Our first simple claim lets us bound the number of points in R x C.

CLAIM 6.12. |[EN(Rx C)| < |EN(Rx C)|, and |D| < |R|/2.

Proof of Claim. The claim is true initially. Suppose that it is true at the beginning
of an iteration. When we add j to C on line 3, we have |E’ \ (RU D)| > 3|E’|/4, and
therefore have |R N E7| < |E7| /4.

Line 4 therefore adds at most |E7|/4 row indices to D. Since each element of
R x C contained exactly one element of E at the end of the previous iteration, each
row added to D by line 4 has exactly two points of E in the columns of C' and there

10Tn Algorithm 6.1, instead of the constant 3/4 in line 2, we could have chosen any (1 — ) instead.
In this case, we would achieve a bound for L1_2~(k) < 2,/ 7&:;’,” k. For simplicity, we have chosen

~ = 1/4, which is quite close to optimal and has a larger value of a =1 — 2.
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are no points of E in (RU D) x C, the iteration adds at most 2|E7|/4 = |E’|/2 points
of Eto R x C.

On the other hand, line 5 adds at least 3|E7|/4 elements of E/ to R and only
removes the at most |E7|/4 elements of RN E7, so R grows by at least |E7|/2 rows in
total. Since each row of R x C has exactly one point in the columns of C, at least
|E7|/2 points of E get added to R x C.

Counting rows, we have added at most |E7|/4 rows to D and at least |E’|/2 rows
to R, which maintains that |D| < |R|/2.

Counting points, the increase in size of E N (R x C) is at most |E7|/2 which lower
bounds the net gain for E N (R x C). This maintains |[EN (R x C)| < |[EN (R x C)|
as required. O

We define s to be the larger of |R| and the maximal number of points in E of any
row. For convenience, write Z = RU D.

When Algorithm 6.1 finishes, for every column j € C, fewer than 3/4 of its points
are in rows of Z and hence more than 1/4 of its points are in rows of Z. So we must
have that

|[EN(ZxC)|>|EN(ZxC)|/3.

As Z x C has no points of E and each row has at most s points of E, the total number
of points is

k=|EN(Z x [n])|+|EN(Z x [n])|
=|En(Zxn)|+|EN(Z xC)|
<|EN(Z x [n))|+3|EN(Z x O
<4|Z|s<4-(3|R|/2)s < 65°.
Therefore s > \/m |

Lemma 6.6 is an immediate corollary of Lemmas 6.10 and 6.11 which completes
the proof of Theorem 6.5.

Theorem 6.5 can be directly extended to an equivalent lower bound on the quantum
cumulative memory complexity for Boolean matrix multiplication.

COROLLARY 6.13. Any quantum circuit computing n X n Boolean matriz multipli-
cation A e B with T queries, space S, and success probability more than 1/(2T) must
have cumulative memory that is Q(n'®/T3)

Proof. Using Lemmas 6.10 and 6.11, we can apply Proposition 4.16 with C' =1,
m’(n) = n?/8, h(k,n) = ck3/*n!/2/21/4 K (n) = 2¢ where constants ¢,¢ > 0. This
gives us a cumulative memory lower bound of: Q(min(n'®/T3 n*)) = Q(n'%/T3) as T
must be Q(n?). 0

We also obtain a general classical lower bound from these arguments. We start by
showing a classical analogue of Lemma 6.10.

LEMMA 6.14. Let €,y > 0 be the constants from Proposition 6.4. Let k be an
integer such that L(k) <n/2. Any randomized algorithm with at most (2¢/3)kn/L(k)
queries to x can only produce k correct output values of n x n Boolean matriz product
A e B with probability at most 2-7F.

Proof. Let E be any fixed set of k output indices in A e B. Let L < L(k) be the
smallest number such that E can be colored with L colors. By Lemma 6.8 we know
that OR’EH /L] is a sub-function of the outputs indexed by E. Thus, by Proposition 6.4
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any randomized algorithm making at most €k |[n/L| > (2¢/3)kn/L(k) queries can
compute these outputs with probability at most 277%. 0

THEOREM 6.15. Any output-oblivious classical query algorithm computing n X n
Boolean matriz-multiplication with T queries and space S with success probability more
than 25 must have T that is Q(n®/V/S).

Proof. Since there are n? outputs, which is a trivial time lower bound for sequential
algorithms, we can assume that /S is at most an for some arbitrarily small constant
a > 0. Let ¢ = 2/~ for y given by Proposition 6.4 and let k = ¢S. Our assumption with
o < 1/(104/c) implies, by Lemma 6.11 that L(k) < 5v/k = 5v/¢cS < n/2. The main
difference in parameters from the quantum case is that we need to apply Lemma 6.14
instead of Lemma 6.10 to say that classical output-oblivious branching programs
of width 2° have success probability at most 277% = 2725 of computing k correct
output values of A @ B. There are at most 2° nodes at a layer boundary and hence
the probability that a layer of height (2¢/3)kn/L(k) correctly produces k output
values is at most 27°. Rewriting using L(k) < 5vk, we obtain that a layer of height
(2¢/ 15)\/%71 correctly produces outputs with probability at most 27°. Since there are
n? outputs, for any circuit of depth 7' at most (2¢/15)n%/v/k must have some layer
of depth 2¢/15)vk n during which at most k outputs are produced and each output
value must be correct for the algorithm to be correct, so the overall success probability
is at most 27, ]

This achieves the goal suggested by Klauck, Spalek, and de Wolf [31] who ventured
that the likely tight tradeoff for classical computation of Boolean matrix multiplication
is T2S = Q(n%). Note that our quantitative bound asymptotically dominates the
bounds of Abrahamson Proposition 6.2 for all values of S; it always is at least as large
(up to a constant factor) and the only regimes where our quantitative bound does not
strictly dominate that of Abrahamson are when S is ©(1) and when S is ©(n). Of
course, Abrahamson’s lower bounds are for the branching program model which allows
for the timing of each output bit to depend on the input. (The classical lower bound of
[31] for output-oblivious query algorithms is exactly the same as that of Abrahamson
for space O(y/n).) Abrahamson’s bound on the number of queries becomes the trivial
O(n?) when S = ©(n?/?) which is tight for the distribution used in Abrahamson’s
paper, whereas the lower bound of Theorem 6.15 remains non-trivial so long as S is
o(n?). In fact, just as with our quantum lower bound in Theorem 6.5, the exponents
of n and S in Theorem 6.15 are optimal for a circuit model that allows arbitrary gates
between queries since that would allow the circuit to simulate a decision tree of height
2n? that reads and remembers the entire input and produces all of the outputs at its
leaves; our lower bounds also apply to such a model. See Figure 4 for a comparison of
our lower bounds with those of prior work for both classical and quantum computation.

We can extend the above to get a matching lower bound on the classical cumulative
memory complexity.

COROLLARY 6.16. Any output-oblivious classical query algorithm computing n X n
Boolean matriz-multiplication with T queries and space S with success probability more
than 1/(2T) must have cumulative memory that is Q(nS/T).

Proof. Using Lemma 6.14 we can apply Proposition 4.16 with m/(n) = n?,

h(k,n) = (2¢/15)Vkn, and K (n) = 27/? to get that the cumulative memory must be
Q(min(nb/T,n*)) = Q(n°/T) as T must be Q(n?). |

Using the same proof idea as in Corollary 5.5, the bounds in Theorems 6.5 and 6.15
immediately imply lower bounds for Boolean matrix squaring.
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Fic. 4. Comparison of our lower bounds for Boolean matriz multiplication with those of prior
work for both quantum and classical computation. The shaded region comes from the fact that the
time must always be Q(n?). The endpoints mark choices of parameters where the upper and lower
bounds match.

COROLLARY 6.17. Any quantum circuit computing n X n Boolean matriz squaring
on all inputs with T queries, space S, and success probability more than 2~° must have
T that is Q(n2'5/Sl/4). Any such output-oblivious classical query algorithm must have
T that is Q(n?/SY?). Quantum and classical circuits for Boolean matriz squaring
with success probability larger than 1/(2T) must have cumulative memories Q(n'%/T3)
or Q(n®/T) respectively.

6.2. Boolean matrix-vector product. Finally, we discuss the problem of
quantum computation of Boolean matrix-vector product and the closely-associated
problem of systems of linear inequalities. Here, rather than producing quantitative
improvements which seem unlikely, we focus on a qualitative improvement in existing
results.

Though [3] does not contain an explicit theorem statement on time-space tradeoffs
for Boolean matrix-vector products that is the analog of the linear algebra bound in
[4] or our Theorem 4.1, [3] contains the claim that analogous results do indeed hold
for this problem using the same ideas. (The lower bound would be a factor n smaller
than the lower bound for linear algebra.)

For quantum circuits, Klauck, Spalek, and de Wolf [31] prove the following results
for computing Boolean matrix-vector products. (They also prove a similar result for
the case of output-oblivious classical query algorithms, though that does not apply to
unconstrained branching programs.)

PROPOSITION 6.18 (Theorem 23 in [31]). For every S in o(n/logn), there is an
n x n Boolean matriz A®) such that every bounded-error quantum circuit with space
at most S that computes Boolean matriz-vector product AS) e x in T queries requires

that T is Q(y/n3/S) = Q(n'>/595).

This result is weaker than a standard time-space tradeoff since the function
involved is not independent of the circuits that might compute it. In particular, [31]
does not find a single function that is hard for all space bounds, as the matrix A()
that they use changes depending on the value of S. Because [31] does not express
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this dependence in the statement of their results, we provide a detailed discussion of
their arguments to make the need for that dependence clear. We will also need their
definitions in our results.

For S = o(n/logn), the matrix A®S) is produced via the probabilistic method
using the following distribution: Choose k to be a sufficiently large constant multiple of
S. This distribution chooses matrices A C {0, 1}™*"™ by selecting a uniformly random
subset of n/(2k) positions in each row to set to 1, with the remainder of the entries in
each row being 0. They show that with positive probability over the choice of A, for
all sets I C [n] of size k, at least k/2 of the rows of A; contain at least n/(6k) 1’s that
are unique in their column of Aj; that is, those columns are 0 in all of the & — 1 other
rows of A;. A®) is then some fixed matrix for which this property is true.

More precisely, when we fix a row j € I and the n/(2k) columns where it is 1, the
expected number of the (k — 1)n/(2k) < n/2 1’s among the rows in I\ {j} that land
in those n/(2k) columns is less than n/(4k). By a Hoeffding bound, the number of
those 1’s is at most n/(3k) except with probability exponentially small in n/k, which
is n=M) since k = O(S) = o(n/logn). Hence, except with probability n=<(!), a row
j €1 is good for I in that at least n/(2k) — n/(3k) = n/(6k) of the 1’s in row j are
unique in their respective columns in A;. For a fixed I, the probability that there is
no J C I of size k/2 all of whose rows are good for I is less than the probability that
there are k/2 rows of I that are not good for I. This happens with probability at most
n~“(®) since are at most (k%) such subsets of rows of size k/2, each of which is not

good for I with probability n=«®) (and the probabilities are negatively associated).
Since there are only (:) choices of I, the total probability that A does not have desired
properties is only n=wk),

The proof of Proposition 6.18 follows from the usual time-space lower bound

methodology and the following lemma:

LEMMA 6.19. There is an o > 0 such that for every quantum circuit C that makes
at most an/kn queries to x € {0,1}™, the probability that C produces at least k correct
output values of A ez is at most 272H)

Proof. Let I C [n] be the set of indices of the first k outputs of AS) e z produced
by C. Let J C I be the set of size k/2 rows that are good for I guaranteed by the
properties of A(S). We show that the probability that C produces all outputs even
for the rows in J is exponentially small in k: For each row j € J there is a set C; of

n/(6k) columns of AgS) where the unique 1 is in row j. Consider the restriction to
input vectors z € {0,1}" that are 0 outside of |J;c; Cj. Then the outputs for j € J
are a direct product of k£/2 OR functions of size n/(6k) on the bits of (J,.; C;. By a
strong direct product theorem for OR (Theorem 14 of [31]), for ¢ a sufficiently small
constant, any circuit of height at most e(k/2)\/n/(6k) = e1/kn/24 is correct with
probability at most 2~ 7% for some constant v > 0. ]

On the algorithmic side, we have the following:

PROPOSITION 6.20. For every ¢ > 0 and every Boolean matriz A € {0,1}™*"
there is a quantum circuit using space O(logn) and time O(mn'/?logm) that computes
Boolean matriz-vector product A e x with error at most m~¢. More precisely, the

algorithm runs in time O(|A|1 /2 logm) where |Aly 2 = 3271 /| Adls.

Proof. For each row in turn, run Grover’s algorithm to compute the OR of the
bits indexed by the 1’s of A;, the i-th row of A with probability of error at most m ¢!
per row for a total error of at most m™°. 0
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We note that for the fixed matrix A®), each row has ©(n/S) 1's so [A)]; ;5 =
O(n®/?2/8'/2). This is an odd situation in that the matrix A®) designed to require
large time for space S algorithms can be solved in nearly the same time bound by
space O(logn) algorithms.

Systems of linear inequalities. The same space-dependent matrix A®) in Proposi-
tion 6.18 was also used in [7] for systems of inequalities.

PROPOSITION 6.21 (Theorem 11 in [7]). Let b be the length n all-b vector. For
every S in min(O(n/b),0(n/logn)) there exists an n x n Boolean matriz A such

that every bounded error quantum circuit with space at most S that decides the system
Az > b of n inequalities requires that T is Q(/bn3/S).

Similar to [31] this matrix is used so that any quantum circuit that computes A g >p
can be broken down into slices that solve independent instances of the b-threshold
function.

Our results. Using Proposition 6.18, we can obtain a time-space tradeoft lower
bound for quantum computation of Boolean matrix-vector product that has an only
slightly weaker lower bound in terms of the matrix dimensions but, unlike the previous
bound, defines a fixed computational problem whose definition is independent of the
space bound allowed.

THEOREM 6.22. There is a fized m x n Boolean matriz A with m < nlogyn such
that for every S that is o(n/logn) every bounded-error quantum circuit with space at
most S that computes Boolean matriz-vector product A e x in T queries requires that

T is Q({/n3/9).

Proof. The matrix A consists of a stacked version of the matrices Ag,) from
Proposition 6.18 for each choice of S; = 2*log, n and 0 < i < log, n—2log, logs n—w(1).
Any quantum circuit computing A e x using space S must compute A(°) & z for some
S; where S; < S is within factor of 2 of S. It is easy to see that the construction of
A(g) for Proposition 6.18 is flexible in terms of the constant factor by which k exceeds
S and hence computing matrix A% e x also requires time 7' that is Q(y/n3/9) as
required. 0

Systems of linear inequalities. This same matrix A can be substituted into Propo-
sition 6.21 to obtain a time-space tradeoff for systems of inequalities.

COROLLARY 6.23. Let b be the length n all-b vector. There is a fixred m xn Boolean
matriz A with m < nlogyn such that for every S in min(O(n/b),o(n/logn)) every
bounded error quantum circuit with space at most S that decides the system Ax > b

requires T that is Q(1/bn3/S).

7. Directions and open problems.

Boolean matriz multiplication. The quantum time-space tradeoff lower bounds for
Boolean matrix problems, both our improved bounds and prior work, apply only to
output-oblivious algorithms, unlike our lower bounds for algebraic problems. This is
primarily due to the fact that all the lower bounds only use the strong direct product
theorem given in Proposition 6.4 as a black box. To obtain a more general lower bound
tradeoff, one would need a much more flexible kind of exponential probability decay
bound that works for any individual sequence of k output values, even with partial
information that is the result of a bounded number of quantum queries.

Further, to extend the quantitative lower bounds we prove in Theorems 6.5 and 6.15
to arbitrary input-independent output orders, one would also need a single fixed input
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distribution for the entire branching program, rather than one that depends on the
outputs being produced. The probability distribution with independent n~!/2-biased
coins used in Abrahamson’s unrestricted classical lower bounds in Proposition 6.2
cannot yield such bounds since his weaker bounds are essentially optimal in expectation
for this distribution. It seems likely that any such distribution will need some sort of
dependence between the rows A and columns of B; otherwise, for example, relatively
inexpensive estimates for the density of 1’s in the rows of A and columns of B could
be used to provide good predictions for all output values.

We also note that, though our lower bounds in Theorems 6.5 and 6.15 are optimal
at the extremes of time and space, and hence for any fixed power relationship between
time, space and input size (see Figure 4) we still do not know whether our lower
bounds are optimal between the extremes: Can algorithms match our lower bounds
when the space is in a middle range such as S € [n®,n?¢].

Bucketing for other multi-output problems. There are a number of other classical
time-space tradeoff lower bounds for multi-output functions such as those in [2, 10, 34,
36] but no quantum time-space tradeoff lower bound is known. Can one use recording
queries together with the bucketing methods that we introduce to prove analogous
quantum lower bounds for these problems?

Single-output functions. Though there are some methods for classical time-space
tradeoff lower bounds for single-output functions such as [11, 5, 14, 37, 30], there
are no time-space tradeoff lower bounds known for quantum algorithms computing
any single-output function. For example, is there any natural single-output problem
where (1) quantum algorithms with unrestricted space require only a substantially
sublinear number of queries, or otherwise beat the best classical algorithms, while (2)
space-restricted quantum algorithms cannot? Problems such as collision-finding and
element distinctness seem natural candidates for such tradeoffs.
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Appendix A. Deterministic query algorithms.

Here we review the matching time-space space tradeoffs that match our quantum
and classical lower bounds. Most of these results were mentioned in [4] but are more
fully sketched here. In the following, for simplicity, we describe versions of several of
these algorithms over finite fields rather than finite subsets of size d over arbitrary
fields. For the more general case, the output values are sums of products of input
values and may take more bits to represent; because of this the log p in our bounds
below can be replaced by O(max(logd,logn)).

The first gives classical algorithms for matrix-vector products matching Theo-
rem 4.1.

PROPOSITION A.1. Let A be any n x n matriz over a finite field F,. For any
S € [logy n,nlog, p] there is a deterministic classical query algorithm computing the
matriz vector product f(x) = Az for all inputs x € F), that uses space S and only
O(n?logp /S) queries to the input.

Proof. Let s = S/logyp. The query algorithm (which has the matrix A encoded
in it) reads one entry of the input z at a time and maintains a block of s different
partial sums (using slog, p space). This algorithm produces S outputs every n queries
and thus produces all outputs with n?/s = n?log, p /S queries. 0

Note that in the special case of computing the Discrete Fourier Transform (Corol-
lary 4.6), this deterministic query bound can be made explicit using standard opera-
tions:

PROPOSITION A.2 ([38]). There is a deterministic classical algorithm computing
the Discrete Fourier Transform (DFT) DFT,(z) = Wz using space S > logyn and
time O(n?/S + nlog S).

Proof. Assume without loss of generality that S and n are powers of 2 and we
have O(S) space. This follows by evaluating the graph of the fast Fourier transform
(FFT) algorithm for computing the DFT as shown in Figure 5. In a single pass over
the input z in O(n + Slog.S) time the algorithm can compute the values of S of the
outputs using space O(S) as follows: while maintaining log,(n/S) < S entries for
the depth-first evaluation of each subproblem at depth log, S and uses space 2S5 to
iterate through the top log, S levels which are evaluated together in a size S FFT
computation. This pass is repeated for each of the n/S such blocks in turn. O

The following deterministic algorithms for convolution match Corollary 4.8.

PROPOSITION A.3. For any S € [logy n,nlog, p| there is a deterministic classical
query algorithm that computes the convolution f(u,v) = u*v where u,v € Fy that
uses S space and only O(nlogp /S) queries.
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Fic. 5. The FFT graph with the space-efficient evaluations on one pass highlighted.

Proof. Let s = S/(2logyp). The indices of u,v and w = wu x v are reduced
modulo n. The query algorithm computes outputs w, ... w;1, of the convolution as
follows: Initialize wj, ... w;ts to the value zero. First query and record the values of
Vi—1,...Vi+s—1. Then query values of u one at a time in increasing order (uy, us, . .. uy).
After reading u;, for each k € {i,...,7+ s}, add u; - vy—; to the value of wy. Then
forget the value of v;;,—; and query the value of v;_;_1, remembering this value. After
all of u has been queried, we have that wy =) jen] Wilk—j which is the correct value
for these outputs. Repeating this procedure n/s times gives the convolution of v and
v using only S space and 2n queries per iteration. Since there are n/s iterations, we
get O(n?logp /S) queries. 0

The algorithms below show that our matrix-inversion lower bound for upper-
triangular matrices in Corollary 4.14 cannot be improved for large space bounds, even
for deterministic query algorithms. This is open for small space bounds.

PROPOSITION A.4. For any S € [nlogy p,n?log, p] there is a deterministic clas-
sical query algorithm computing the inverse f(A) = A= where A € Fp~™ is a unit
upper triangular matriz that uses S space and only O(n*logp /S) queries.

Proof. Let s = S/(2nlogp). We will produce columns ji,...j, of A=! as follows:
Let e; be the column vector with entry 1 at index j and 0 everywhere else. We use back
substitution to solve the systems Az, = ej,,..., Axs = e;, by querying each entry
of A exactly once. In particular, the i-th entry of z is 1 — Zée[nfi] Ain—t41Tn—041
when ¢ = k and — Zfe[nfi] Ain—t41Tn—¢+1 otherwise. We start by computing the
n-th entry of each xj and work backward toward the first entry. We record each
entry of each xj as is it computed for use in the subsequent computational steps.
Note that the i-th entries of all the x; only require making queries to the i-th row
of A and so all the zj can be computed with only O(n?) queries. Finally, each zy is
output as the jj-th column of A~!. This procedure uses O(n?) queries and at most
S space to produce s columns of the output. Thus the procedure must be repeated
n/s =2n2logp /S times to produce all n columns of output. This gives a total query
complexity of O(n*logp /5). 0

The following give the deterministic algorithms matching our matrix-multiplication,
Boolean matrix-multiplication (Theorems 5.1 and 6.5) and squaring lower bounds
(Corollaries 5.5 and 6.17).

PROPOSITION A.5. There are deterministic query algorithms for n x n Matriz
Multiplication over F,, using space S that make O(n*/Togp/V/'S) queries. Further,
O(n?’/\/g) queries suffice for deterministic algorithms using space S to compute n X n
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Boolean Matriz Multiplication.

Proof. Let s = S/(3logp). We partition each input matrix A and B into /s X /s
blocks A;; and B;; for ¢,j € [¢] where £ = n/\/s. We compute the /s x /s blocks
C;; of the product as follows: Initialize the block C;; to 0. For k =1 to ¢, query all
entries of A;; and By, and add their product A;,By; to C;;. The 3 matrices A;, Bij,
and Cj; together require space S since each entry can be expressed using logp bits.
The total number of queries to compute C;; is ny/s and there are £ = n?/s blocks to
compute for a total of n//s = O(n®v/Iogp/v/'S) queries as claimed.

The query algorithm for Boolean Matrix Multiplication is analogous with s = 5/3
and entry-wise V instead of addition. 0

Finally, we see that the matrix triple-product and cubing lower bounds in Corol-
laries 4.12 and 4.13 have matching deterministic query algorithms.

PROPOSITION A.6. For any S € [logy n,n?log, p| there is a deterministic classi-
cal query algorithm computing the Matriz Triple Product f(A, B,C) = ABC where
A,B,C € Fp*" that uses S space and only O(n*logp /S) queries.

Proof. Let s = S/(4logp). We view the product ABC as (AB)C and use the
same strategy as in Proposition A.5 to compute partial products of (AB) and then
ABC. We partition the input, partial product, and output matrices into blocks
Aij, Bij, Cij, (AB);;, and (ABC);; for i,j € [¢] where £ = n/\/s. To compute (AB);;
we initialize the values in the block to zero. Then, for each k € [¢], we query each
A, and By; and then perform the multiplication of these submatrices, adding the
result into (AB),;. After iterating over all k, we have computed the value of (AB);;.
Now to compute (ABC);; we start by initializing the values in (ABC);; to zero. For
each k € [{], we first compute (AB);; as a subroutine and then query Cy; and add the
partial product (AB);yCy; into (ABC);;. After iterating over all k, we have computed
the block (ABC');;. This query algorithm stores at most 4 different /s x /s blocks at
any time step. It requires \/sn queries to compute each (AB);; and needs to compute
n/+/s such blocks for each (ABC');;. Adding the /s queries to C' needed to compute
(ABC);; gives ny/s(1 +n/y/s) total queries to compute each block (ABC);;. Since
there are n?/s such blocks, we get O(n?/s) or O(n*logp /S) queries. |

Appendix B. When do good bucket reduction schemes exist?.

Our definition of t-reduction schemes for c-admissible buckets requires that there
is a way to select c-admissible buckets for any quantum state |¢;) defined over I';. In
this section we show that a much simpler combinatorial property of the admissible
buckets is sufficient to yield such schemes. As noted in section 3, none of the lower
bounds for specific functions that we prove require the methods in this section.

To motivate this property, for any G C T, we can consider a state |¢F) =
Y rec \/% |z), the uniform superposition over G. A t-reduction scheme of c-admissible

buckets for ¢ with size ¢ must yield a set B = Bg of c-admissible buckets for ¢ of
size ¢ such that ||HUB€BGB 169)|| > v/3/2. In particular, since |¢¢) is a uniform
superposition, (Jpcp,, B must contain at least a 3/4 fraction of the elements of G.
This naturally leads us to the following definition:

DEFINITION B.1. Let q be a partial assignment of k output values. We say that q
satisfies the (c,{,t) admissible bucket covering property for ¢ if, for every subset G of
Iy, there is a set of at most £ c-admissible buckets for q that contain at least a 1/v/2
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fraction'! of the elements of G.

We will see that merely having such a property is sufficient to yield a reduction scheme
that is not much larger and works for any state |¢;) defined over T';.

LEMMA B.2. Let f be a function defined on D™. Let ¢ > 1 and q be a partial
assignment of k output values of f. If the (c,¢,t) admissible bucket covering property
holds for q then there is a t-reduction scheme of c-admissible buckets for q with size
O(tllog(ne|D|/t)).

Proof. Let [¢1) = > cr, @ |7) be a quantum state. For A = 21712 partition Ty
into subsets T'},T7, ... such that T} contains the 2 € Ty such that |a,| € (A%, A\~(=1)].

Let k = 24 + [6t logy(ne|D|/t)] and let E = J,., I'i be the portion of |¢;) not
associated with the first x sets of elements of I';. The norm of the projection of |¢;)
on E (in other words ||TIg |¢¢)]]) is at most

(B.1) VIE|- A < Ty - A" = (zt: (Z‘) Dj)1/22—m/12

Jj=0

ne|D|\t/2, /10
< (T) 27512 < 1/4

by our definition of k. The reduction we construct will definitely leave this “error”
portion of |¢;) uncovered.

Associated with each T'¢ for i € [k], we apply the (c,¢,t) admissible covering
bucket property for g twice. The first yields at set of ¢ c-admissible buckets for ¢
that together contain at least 1/1/2 fraction of the elements of I';; we then apply the
property to the < 1—1/+/2 fraction of elements of I'} that were not covered by the first
application. Together we obtain a family B;, of size at most 2¢ that contains a subset
G; consisting of at least a % + %(1 - %) = /2 — 1/2 fraction of the elements of T:.
The set of c-admissible buckets for g associated with |¢;) in the ¢-reduction scheme is
B = U Bi- The size of this family is at most 2x¢ which is O(t¢log(ne|D|/t)) as
claimed.

It remains to prove that at most amplitude 1/2 is left after removing the portion
of |¢+) covered by B. For each B;, which contains the elements of G; for ¢ < x, we have

D lau]? > (V2 - 1/2) - [Df A2

zeG;

As we know that for all x € G, |a,| > A™% and |G| > (V2 — 1/2)|T"}|. Next we can
use that for all z € G;, X™! > |a,| to get

S el 2 A2(V2 - 1/2) - Y Jauf?

z€G; zel

— (21/3 _ 2—7/6) . Z |az|2

z€el}
Now let I', = | Jgc B- Since |¢;) is a normalized vector supported by basis state in

1While a 3/4 fraction of the elements are covered by a t-reduction scheme of c-admissible buckets,
we do not need to cover the same fraction of elements in this definition. We choose a fraction that is
more convenient here.
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Ft7
Ty (@) 1> = D Je|®
1€ [K]
zeG;
> (21/3 o 277/6) Z |az|2
i1€[K]
1‘61—‘7;

= (21/3 —277/6) Mr 5 o]

Now since |¢;) is a quantum state with a 2-norm of 1 and all of its amplitude is on
basis elements in Ty, we have that ||IIr,\ g [¢¢)]|* + |15 [¢¢)[|* = 1 and so the above
can be rewritten as

ey [¢0)[| = (21/° = 2770)(1 — || T [60)[1*)
> (213 —277/5)15/16
> 3/4

where the middle inequality follows directly from (B.1). This directly implies that
[T\, [¢2)]] < 1/2 as required. O
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