
Copyright
by

Niels Kornerup
2025

1

The Dissertation Committee for Niels Kornerup
certifies that this is the approved version of the following dissertation:

Time, Space, and Energy in Computation

Committee:

David Soloveichik, Supervisor

Scott Aaronson, Co-supervisor

Paul Beame

David Zuckerman

2

Time, Space, and Energy in Computation

by
Niels Kornerup

Dissertation
Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
August 2025

3

Acknowledgments

I could not have asked for a better advisor than David Soloveichik, who helped
ignite my love of research. David has always made time to collaborate on interesting
questions and provide valuable and detailed feedback on my work while also giving
me the freedom to pursue my own research directions. His insights on how to conduct
and present research have been invaluable to my development as an academic. My
co-advisor, Scott, has had profound impact on my research directions. During my
tenure as a student at The University of Texas at Austin, I have taken three of Scott’s
classes, and they have been some of my favorite courses at the University. Scott has
opened my eyes to the exciting world of quantum computation, and also given me
a keen eye for seeing past the hype behind quantum. I would like to thank Paul for
being a wonderful co-author and mentor throughout my PhD journey. I would also
like to thank David Zuckerman for taking the time to be a member of my committee.

Next I would like to thank all of my math and science teachers from Gullett,
Kealing, and LASA who inspired my love for these subjects. I am extremely privileged
to have received such a high quality education that prepared me for my academic
journey. Finally, I want to thank all the friends and family who have supported me
throughout this process. My father and grandfather, Jacob and Peter respectively,
both inspired me to follow in their footsteps and pursue a PhD in computer science.
Jacob also took the time to read and give comments on parts of this dissertation, for
which I am eternally grateful. Together with my mother and sister, Kat and Eva
respectively, I am lucky to have such a supporting family nurturing my love of learning.
Last but by no means least I want to thank my fiancée, Elena, for sticking by my side
throughout this long journey.

My research in this dissertation was supported by NSF grant CCF-1901025, the

Sloan Foundation, and a Schmidt Sciences Polymath award to David Soloveichik.

4

Preface

This dissertation contains text copied from multiple papers I have made signif-
icant contributions to during my PhD. Here I will outline the sources, collaborators,
publication venues, and my contributions to each of these papers.

The work in Chapter 2 comes from (Kornerup et al., 2025) in collaboration
with Jonathan Sadun and David Soloveichik. I presented an early version of this paper
as a poster at QIP 2022 and the full version of the paper was published in the journal
Quantum in 2025. I am mostly responsible for our results on the structure of optimal
pebbling algorithms, our results on the binary tree, and our PSPACE-hardness result.
In addition, I was the main author for most of the exposition as well as the final
formulations of all of our proofs and theorems.

The work in Chapter 3 comes from (Beame et al., 2024) in collaboration
with Paul Beame and Michael Whitmeyer. I presented this paper as a talk at both
STOC 2024 and QIP 2025. Our new lower bounds for matrix-vector products and
matrix multiplication were the result of close collaboration with Paul. I am the
primary contributor for our lower bounds derived from our main theorems as well
as the matching classical query algorithms. I was also substantially involved in the
writing of Section 3.3, which was recommended by the anonymous reviewers for an
in-progress submission of this paper to SICOMP. While I worked on the Boolean
matrix multiplication problem, our final results and presentation were mainly the
work of Paul and Michael.

The work in Chapter 4 comes from (Beame and Kornerup, 2023) in close
collaboration with Paul Beame. Some of the related results from (Beame et al., 2024)
are moved into this chapter in order to improve overall readability. I presented this
paper as a talk at ICALP 2023 and a Journal version has been accepted to the ACM
Transactions on Computation Theory journal (Beame and Kornerup, 2025). My main
contributions to this work include the premise of studying unconditional cumulative

5

memory lower bounds, our preliminary lower bound on classical sorting (which directly
lead to the simple version of our general result), generalizing the quantum sorting
bounds to arbitrarily output orders, and using the generic theorems to prove most
of our lower bounds. I was also heavily involved in proving our quantum cumulative
memory lower bound on sorting, which eventually lead to our fully generic result. I
was only minimally involved in the details of the proof of our generic theorems, but
have included them for completeness.

The work in Chapter 5 is a heavily modified version of preprint (Doty et al., 2024)
coauthored with David Doty, Austin Luchsinger, Leo Orshansky, David Soloveichik,
and Damien Woods. The preprint was presented as a poster and short talk at DNA
2023 where it won the best student / postdoc poster presentation award. Since DNA
2023, my coauthors and I have learned significantly more about the thermodynamics
of computation, making a lot of the old writing and some of the ideas for this project
out of date. This new version of the project fixes many of these issues while adding
new content on function computation to supplement our results on sampling. I was
the primary author and contributor to both the preprint and the new modified version
of this work presented in this dissertation.

Chapter 6 contains new work made in collaboration with Minki Hhan and David

Soloveichik. My main intellectual contributions to this project include identifying

minimizing entropy flow as a PP -hard problem, proving that approximate optimization

is NP hard, and completing most of the writing in this chapter. At the time of writing,

this dissertation is the only place where these results appear.

6

Abstract

Time, Space, and Energy in Computation

Niels Kornerup, PhD
The University of Texas at Austin, 2025

SUPERVISORS: David Soloveichik, Scott Aaronson

Time, Space, and Energy are the three most important measures of cost for
computation. In this dissertation, we explore multiple ways of understanding these
costs as notions of complexity for classical and quantum computation. This includes
traditional ideas that are well established within the field of theoretical computer
science alongside new approaches inspired by modern computing environments and
recent developments in stochastic thermodynamics. We do this by discussing topics
including the spooky pebble game, quantum time-space tradeoffs for matrix problems,
cumulative memory complexity, Brownian computation, and the entropy production
of Boolean circuits.

The spooky pebble game characterizes time-space trade-offs for the quantum
simulation of irreversible classical circuits using intermediate measurements. We
show asymptotically tight upper and lower bounds on the number of steps (or time)
needed to pebble the line graph with any given pebble (or space) bound. This gives a
general technique for simulating any irreversible classical computation on inputs in
superposition with a better time-space trade-off than would be possible only using
reversible simulation. We also generalize the spooky pebble game to arbitrary DAGs
and show that in general finding the minimum number of pebbles required to pebble
a graph is PSPACE-hard to approximate.

7

We introduce a new technique for applying Zhandry’s quantum recording
query method to prove tight quantum time-space product lower bounds for matrix
problems. Using this technique we prove that for any space bound S, there is at most
a constant factor speed up between S bit classical algorithms and S qubit quantum
algorithms that compute the matrix-vector product function f(x) = Ax or the matrix
multiplication function f(A,B) = AB. We also introduce a new coloring technique
that improves the best known quantum lower bound for Boolean matrix multiplication
by a factor of S1/4.

Cumulative memory complexity, the sum of the space needed per step of an
algorithm, is a notion of time-space complexity originally formulated for password
hashing. We justify cumulative memory as a modern measure of complexity for general
algorithms that run on a shared device in the cloud or on a high performance com-
puting system. We prove that virtually all known methods for proving unconditional
time-space product lower bounds for classical and quantum algorithms, including our
new bounds for quantum linear algebra, can be extended to give matching asymptotic
bounds on the tighter notion of cumulative memory complexity. Thus, current tech-
niques are insufficient to prove an unconditional asymptotic gap between cumulative
memory and time-space product complexity.

Finally, we explore recent connections between the fields of stochastic thermody-
namics and theoretical computer science to evaluate the energetic costs of computation.
We provide an overview of how stochastic thermodynamics can be applied to compu-
tation and present a general strategy to build devices that can perform computation
with an energy upper bound that only scales linearly with the size of the input and
output regardless of the time complexity of the computation. We also consider the
energetic costs of Boolean circuits, and prove that optimizing the energy efficiency of
gates in a Boolean circuit is PP -hard and NP -hard to approximate.

8

Table of Contents

List of Tables . 12
List of Figures . 13
Chapter 1: Introduction . 14

1.1 Preliminaries . 19
1.1.1 A brief introduction to quantum computing 19

Part I Time and space for quantum and classical compu-
tation 25
Chapter 2: Tight bounds on the spooky pebble game 26

2.1 Introduction . 26
2.2 Preliminaries . 29
2.3 Pebbling, unpebbling, and unghosting 37
2.4 Algorithms for spooky pebbling the line 41
2.5 Lower bounds for spooky pebbling the line 45

2.5.1 The existence of well-structured optimal pebbling algorithms. . 46
2.5.2 Analysis of T(n,s) . 50

2.6 Spooky pebbling beyond the line graph 56
2.6.1 Hardness of approximation . 57
2.6.2 Efficient pebbling of the tree 59

Chapter 3: Quantum time-space tradeoffs for matrix problems 61
3.1 Introduction . 61
3.2 Preliminaries . 68

3.2.1 Time space tradeoffs for multi-output functions 69
3.2.2 The quantum recording query technique 74

3.3 Our bucketing methods . 77
3.3.1 Bucketing . 78
3.3.2 When do good bucket reduction schemes exist? 83

3.4 Quantum matrix vector products . 85
3.4.1 Success probability of small depth quantum circuits 87
3.4.2 Related time-space tradeoffs . 94

3.5 Quantum matrix multiplication . 97
3.5.1 The success probability of small depth quantum circuits 100

9

3.5.2 Related time-space tradeoffs . 111
3.6 Quantum tradeoffs for Boolean matrix operations 112

3.6.1 Tradeoffs for Boolean matrix multiplication 112
3.6.2 Boolean matrix-vector product 125

3.7 Deterministic query algorithms . 129
Chapter 4: Cumulative memory lower bounds for randomized and quantum

computation . 134
4.1 Introduction . 134
4.2 Preliminaries . 139
4.3 A gap between time-space product and cumulative memory 141
4.4 Cumulative memory complexity of classical sorting algorithms 147
4.5 Quantum cumulative memory complexity of sorting 150
4.6 General methods for proving cumulative memory lower bounds 156
4.7 Applications of our general theorems to classical and quantum computation169

4.7.1 Classical applications of the generic method 169
4.7.2 Quantum applications of the generic method 174

Part II Energy and the thermodynamics of computation180
Chapter 5: Energy-efficient Brownian sampling and computation 181

5.1 Introduction . 181
5.1.1 Main results . 186
5.1.2 Roadmap . 187

5.2 Preliminaries . 188
5.3 Las Vegas sampler . 196

5.3.1 Construction . 197
5.4 Monte Carlo sampler . 205

5.4.1 Construction . 207
5.5 Function computation . 212

5.5.1 Construction . 214
5.6 Discussion . 217

10

Chapter 6: The computational complexity of optimizing the thermodynamics of
Boolean circuits . 220

6.1 Introduction . 220
6.2 Preliminaries . 221

6.2.1 Thermodynamics of Boolean circuits 222
6.2.2 Computational complexity . 228

6.3 Optimal heat functions for known input distributions 229
6.4 Logically reversible operations may require entropy production 231
6.5 PP-hardness of minimizing entropy flow 233
6.6 Hardness of approximation . 235

Chapter 7: Conclusions . 237
7.1 Summary . 237
7.2 Future work . 238

Appendix . 241
Cumulative memory complexity . 241

Extending the lower bound to arbitrary success probabilities 241
Optimizations . 243
Bounding the loss . 246

Works Cited . 249

11

List of Tables

3.1 List of quantum matrix time-space tradeoff lower bounds 66

4.1 List of cumulative memory lower bounds 137

12

List of Figures

1.1 Example quantum circuit . 24

2.1 Ghosting circuit . 31
2.2 Ghosting circuit with abstraction . 32
2.3 Demonstration of saving qubits with ghosting 33
2.4 Spooky pebbling example . 37

3.1 A general quantum circuit with T queries. 71
3.2 Example valid coloring . 117
3.3 Visualization of a single iteration of Algorithm 1. 121
3.4 Comparison of our Boolean matrix multiplication lower bounds with

prior work . 125
3.5 The FFT graph with the space-efficient evaluations on one pass high-

lighted. 130

4.1 Cumulative memory advantage in pebbling graph 143
4.2 Example blocking for quantum sorting cumulative memory lower bound154
4.3 Example blocking for simple generic cumulative memory lower bound 159

5.1 Simple Las Vegas construction . 198
5.2 General Las Vegas construction . 199
5.3 Simple Monte Carlo construction . 208
5.4 General Monte Carlo construction . 208
5.5 The configuration graph of our machine M∗ for function computation. 215
5.6 Example of false paths in irreversible computation 217

13

Chapter 1: Introduction

Time and space are traditionally viewed as the most important measures of
cost in computation. It is highly desirable to design algorithms, be they classical
or quantum, so that they run in few steps (time) and only require a small amount
of memory (space). However, simultaneously minimizing time and space costs is
impossible for many kinds of computational problems (Cobham, 1966). We say that a
problem admits a time-space tradeoff if solutions that are more time efficient require
additional memory. For such problems, the optimal algorithm might depend on the
resources available for computation. Thus it is often desirable to frame a time space
tradeoff in the following manor: given a fixed space bound S what is the least time
needed to solve a given problem? In the modern era, space-bounded computation
is especially relevant within the context of quantum computation. The difficulty in
scaling the number of error-corrected logical qubits is one of the major obstacles to
building general use quantum computers. On the Google Willow processor, achieving
a 10−6 error rate would require each logical qubit to be represented with 1, 457 physical
qubits (AI and Collaborators, 2024). Thus it is important to consider what kinds of
computations are possible on a quantum computer with a limited number of qubits.

In this work, we explore how bounds on the number of available qubits change
the time efficiency of quantum computation. In Chapter 2 we address how a technique
known as the spooky pebble game originally developed by Gidney (Gidney, 2019)
can be used to give better tradeoffs between the number of qubits and the number
of operations necessary to run irreversible classical subroutines like those found in
Grover’s search algorithm (Grover, 1996) on inputs in superposition. We prove tight
tradeoffs for the spooky pebble game on the line graph, representing the limits of the
technique on classical computation composed of sequential black box steps (Kornerup
et al., 2025). Next in Chapter 3 we consider tradeoffs between the query and space
complexity of quantum algorithms for matrix problems (Beame et al., 2024). The

14

query complexity of an algorithm is how many times that algorithm needs to make a
query to its input x1, . . . , xn ∈ Dn to perform computation. For classical algorithms
these queries take the form of an index i and the algorithm then learns the value of xi.
However quantum algorithms can perform queries in superposition to “learn” about
multiple inputs in different branches. Since the query complexity of an algorithm is no
larger than its time complexity, this gives us a way to describe the time complexity of
problems. We prove tight quantum query-space tradeoff lower bounds for a wide range
of linear algebra problems including matrix vector products and matrix multiplication.
Moreover, most of the quantum lower bounds we prove are matched by classical query
algorithms with the same tradeoffs. Therefore we can conclude that, for any space
bound S, there is no query advantage for solving these problems with a quantum
computer with S qubits compared to a classical computer with S bits.

Framing time-space complexity of computation in terms of a tradeoff between
the maximum number of bits (or qubits) used in the computation and the number of
computational steps is extremely natural in historical contexts: an isolated computer
only has S memory and should be used to solve the desired problem as quickly a
possible. However, we now live in an age where most expensive computations are
performed on clusters of computers executing many concurrent programs. In such
a setting, the space S available to a “machine” is significantly larger than what is
required for any individual task. This change in context necessitates a new way of
thinking about space as a resource in such computation. A single task can afford to use
significant amounts of memory in short bursts as long as the tasks collectively never
exceed S space. A similar observation was first made by Alwen and Serbinenko in the
context of designing functions like password hashes that should require large time and
space to compute (Alwen and Serbinenko, 2015). In particular, they observed that a
password hashing function h only requiring large maximum space could be exploited by
a special purpose ASIC device that computes k independent evaluations of h in parallel
using significantly less than k times as much memory. To address this problem they
introduced cumulative memory complexity — the sum of the used space per step of an

15

algorithm — as a more fine-grained way to evaluate the time-space costs of individual
tasks on a shared device. Thus it is natural to ask: can we design algorithms that take
advantage of spikes in memory to have a cumulative memory complexity lower than the
best possible time-space product cost? Subject to cryptographic assumptions like the
random oracle model, it turns out that this is possible. There are many cryptographic
instantiations of password hashing functions where a clever parallel algorithm that
alternates between short memory-intensive and long low-memory phases can compute
the function with a cumulative memory complexity lower than the best possible
time-space product cost (Alwen and Serbinenko, 2015; Boneh et al., 2016; Alwen et al.,
2017a; Blocki and Zhou, 2017). In addition to applications for classical cloud and
high performance computing, cumulative memory complexity is a natural concern for
quantum algorithms that run on the first general purpose quantum computers. If each
qubit in a quantum computer has a fixed rate of experiencing errors per unit time,
then the expected number of errors in a quantum computer scales linearly with its
cumulative memory complexity, and it is extremely important to optimize quantum
algorithms to minimize this cost.

In Chapter 4 we present the first unconditional non-trivial lower bounds on
cumulative memory complexity for any problem originally proven in (Beame and
Kornerup, 2025). In particular, we prove explicit lower bounds on the classical and
quantum cumulative memory complexity of sorting and present a general theorem
that can convert virtually all existing classical and quantum time-space product lower
bounds for multi-output functions to matching lower bounds on the cumulative memory
complexity. Moreover, since many of the prior time-space product lower bounds as
well as our new lower bounds in Chapter 3 are matched by existing algorithms, we
show that these algorithms are also asymptotically optimal in terms of cumulative
memory complexity.

While time and space are by far the best-understood notions of cost for compu-
tation, energy consumption is another natural measure of computational complexity.
In 2023 United States data centers consumed 176 terawatt hours worth of energy,

16

representing 4.4% of total consumption (Shehabi et al., 2024). Despite this, we
understand significantly less about the energy costs of computation. With current
computer architectures, the energy cost of a computation is directly proportional to
its time complexity. However, this is not a fundamental constraint on the energetic
costs of computation. Landauer first observed that any physical process that erases
information must dissipate heat (Landauer, 1961). In particular this is necessary to
satisfy the second law of thermodynamics which states that the entropy of the universe
never decreases. Bennett applied Landauer’s observation to computational systems,
observing that this heat cost can be avoided at a cost of time and space by making
computation logically reversible (Bennett, 1973). Follow-up work has used the number
of bit erasures in a computation as a proxy for the energy cost to investigate tradeoffs
between time, space, and energy in computation (Li and Vitanyi, 1996; Demaine
et al., 2016). However, recent developments in the field of stochastic thermodynamics
indicate that these earlier attempts to quantify the energy costs of computation are
somewhat misguided. Physicists have identified entropy production — the change in
the entropy of the universe by a process — as a more precise way to capture energy
costs in computation (Esposito and Van den Broeck, 2011; Sagawa, 2014; Strasberg
et al., 2015; Wolpert, 2019; Wolpert et al., 2024). For a good summary of the recent
progress in this area, we refer the reader to a recent survey on the topic here (Wolpert
et al., 2024). Importantly, while Landauer’s bound still requires information erasure to
release heat, this heat can be later reabsorbed if the process is reversed to generate a
fresh random bit (Esposito and Van den Broeck, 2011). On the other hand operations
that are logically reversible when viewing the entire state of the machine may still
need to release heat even if they are locally irreversible (Ouldridge and Wolpert, 2023).
Entropy production is a harder concept to work with than logical reversibility, as it
not only depends on the logical behavior of a computation, but also the distribution
over inputs and the physical implementation of the device.

Chapter 5 presents a summary of how stochastic thermodynamics can be used to
reason about energy costs in computation. Within this framework, we present a general

17

strategy that can be used to design special purpose energy-efficient computational
devices driven entirely by Brownian motion (Doty et al., 2024). With some mild
physical assumptions, these devices can sample from desired distributions or perform
function computation with an energy cost that only scales linearly with the size of
the input and output. In particular, the energy costs of these devices do not scale
with the runtime of traditional algorithms that solve these tasks, making it possible
to completely decouple time and energy costs of computation. Finally in Chapter 6,
we show that optimizing the energy costs of a Boolean circuit with a fixed (uniform)
input distribution is a PP -hard problem. This further justifies the well studied notion
of “mismatch costs” — which is a source of entropy production caused by computation
whose physical implementation is suboptimal for the target distribution over inputs
(Kolchinsky and Wolpert, 2017).

18

1.1 Preliminaries

Here we present some formal definitions and notation that we will be using
throughout this dissertation.

Definition 1.1. Let f : Dn → Rm be an arbitrary function. Then fi : Dn → R

denotes the subfunction of f containing only its i’th output.

Definition 1.2. Let n ∈ N. Then [n] denotes the set of n indices. This is normally
{1, . . . , n}, but could be {0, . . . , n− 1} depending on the context.

Definition 1.3. Let R be a set and J ⊆ N. Then RJ denotes the set of vectors with
indices in J and values in R. Equivalently RJ can be viewed as the set of functions
f : J → R. Thus an element v of RJ can be indexed by either vi or v[i] for i ∈ J .

Definition 1.4. Let y ∈ Rn, J ⊆ [n], and τ ∈ RJ . Then τ agrees with y (or τ ||y) if
and only if for each i ∈ J we have that τi = yi.

1.1.1 A brief introduction to quantum computing

Our work in Chapters 2 to 4 features results related to quantum computing.
For a more thorough background on this topic, we refer the reader to Scott Aaronson’s
lecture notes on the topic (Aaronson, 2018) or the Nielsen Chuang textbook (Nielsen
and Chuang, 2010). Here we give a brief overview of quantum computing, based on
the presentations in (Aaronson, 2018; Nielsen and Chuang, 2010), to make the results
in this dissertation a bit more accessible to someone with a classical computer science
background.

Quantum states and measurement An n qubit state is a normalized vector (i.e.
the vector’s two norm is 1) |ψ⟩ ∈ C2n . The entry in the j’th index of this vector
corresponds to ‘amplitude’ with which the qubit has the logical value j. We use |j⟩
for j ∈ [2n] (or equivalently j ∈ {0, 1}n) to denote the quantum state with amplitude
one on index j and 0 everywhere else. It is possible to combine two quantum states

19

with the tensor product. If |ψ⟩ , |ϕ⟩ are two quantum states on n and m qubits, then
|ψ⟩ ⊗ |ϕ⟩ = |ψϕ⟩ is their combined state on n + m qubits. The state |00⟩ can be
interpreted as a 2 qubit state where both qubits have the logical value 0 or equivalently
as the tensor product of two single qubit states |0⟩ ⊗ |0⟩. There are some quantum
states, like (|00⟩ + |11⟩)/

√
2 that cannot be written as a tensor product of their

component qubits. Such quantum states are called entangled — a special kind of
quantum correlation that cannot exist in classical random variables.1

When a quantum state

|ψ⟩ =


α0
...

α2n−1

 =
∑

j

αi |j⟩

is measured (in the standard basis), the probability of it giving the value j is |αj|2.
When the measurement gives the value j, the state ‘collapses’ to |j⟩.

Let ⟨ψ| be the conjugate transpose of |ψ⟩. In other words, if

|ψ⟩ =


a0 + b0i

...
a2n−1 + b2n−1i

 =
∑

j∈[2n]
(aj + bji) |j⟩

Then
⟨ψ| =

[
a0 − b0i, . . . , a2n−1 − b2n−1i

]
=

∑
j∈[2n]

(aj − bji) ⟨j|

This way for any pair of quantum states |ψ⟩ , |ϕ⟩, ⟨ψ| |ϕ⟩ is the inner product between
these states. Observe then that ⟨ψ| |ψ⟩ = 1 when |ψ⟩ is a quantum state. Likewise,
two states |ψ⟩ , |ϕ⟩ are orthogonal if ⟨ψ| |ϕ⟩ = 0. The inner product between quantum
states characterizes their similarity.

Let us define two additional one qubit states:

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

1The CHSH game (Clauser et al., 1969) is a two player game where players sharing an entangled
quantum state can outperform any classical strategy.

20

These states represent a superposition over the values |0⟩ , |1⟩. The states |+⟩ , |−⟩
can be thought of as quantum analogs of a coin flip; when measured (in the standard
basis) the state is equally likely to collapse to either |0⟩ or |1⟩.2 This might lead
one to suspect that these states are somehow equivalent to one another. However,
⟨+| |−⟩ = 0, implying that the states are orthogonal. In fact, using more general
measurements, we can see that there is a way to perfectly distinguish state |+⟩ from
|−⟩.

More generally (Nielsen and Chuang, 2010) define a quantum measurement as
a set of linear operators M1, . . . ,Mk such that

∑
j

M †
jMj = I

where M †
j denotes the conjugate transpose of Mi and I is the identity matrix. When a

state |ψ⟩ is measured with this set of operators, the probability of outcome j is given
by

pj = ⟨ψ|M †
jMj |ψ⟩ .

After obtaining this measurement outcome, the state ‘collapses’ to

Mj |ψ⟩ /
√
pj.

This more general framework describes, for example, how one could measure a single
qubit in a larger system. The standard basis measurement is described with mea-
surement operators |0⟩ ⟨0| , . . . , |2n⟩ ⟨2n|. Going back to the states |+⟩ , |−⟩ , observe
that a measurement described by the pair of operators |+⟩ ⟨+|, |−⟩ ⟨−| gives distinct
deterministic measurement outcomes when applied to these states.

The states |ψ⟩ we have described so far are known as pure states. However, it
is also possible to discuss probability distributions over pure states, forming what are

2When |−⟩ is measured in the standard basis and the output value is 1, the state collapses to
− |1⟩. However, as there is no way to distinguish states |1⟩ and − |1⟩, we can drop this so-called
global phase.

21

known as mixed states. Mixed states represent uncertainty in the state of a quantum
system. While pure states are naturally defined in terms of normalized vectors in C2n ,
mixed states are expressed as Hermitian matrices in C2n×2n . Let ρ be a mixture over
pure states |ψj⟩ with probability pj. Then we can represent ρ as:

ρ =
∑

j

pj |ψj⟩ ⟨ψj| .

It is possible to obtain the same mixed state from multiple distributions over
pure states. For example the maximally mixed state:

πmix =
∑

x∈{0,1}n

1
2n
|x⟩ ⟨x| =

∑
y∈{+,−}n

1
2n
|y⟩ ⟨y|

=


1/2n

. . .
1/2n


can be created by any uniform distribution over 2n orthogonal basis states.

Like pure states, we can define measurement of mixed states with linear
operators M1, . . . ,Mk where ∑j M

†
jMj = I. We get that

pj = Tr[M †
jMjρ]

where Tr is the trace. On measurement outcome j the state collapses to

MjρM
†
j /pj.

Unitary operations In addition to measurement, it is possible to manipulate the
state of a quantum system by applying unitary operations. As a reminder, unitaries
are linear operators U whose inverses are their conjugate transpose U †. Applying
unitary U to an input |ϕ⟩ yields the state |ψ⟩ = U |ϕ⟩. For mixed states, applying U
to an input σ yields the state ρ = UσU †. It is possible to define unitaries that act
on only a subset of the qubits in a quantum system. Such unitaries can be extended

22

to act as the identity on the remaining qubits. Important unitaries for quantum
computation include the following:

X =
[
0 1
1 0

]
,Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
,H =

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,TOFF =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Intuitively X represents a classical not gate — it swaps the amplitude associated

with a qubit having the values 0 or 1. The Z and S gates add a phase of −1 or i
respectively to a qubit when it has the logical value 1. The Hadamard gate H maps
between |0⟩ , |1⟩ and |+⟩ , |−⟩. The controlled not gate CNOT applies an X gate to
the second qubit when the first qubit has the logical value 1. The Toffoli gate applies
an X gate to a third qubit when the first two qubits both have the logical value
1. The X,CNOT,TOFF gates represent logically reversible (i.e. invertible) classical
operations. In fact, TOFF is a universal gate for classical computation: any classical
circuit can be simulated using only TOFF gates.

We say that a set of quantum gates S is universal if an any unitary operator
U can be approximated using only gates in S.

Proposition 1.5 ((Shi, 2003)). TOFF,H, S form a Universal gate set for quantum
computation.

While there are many such universal gate sets, picking a particular choice of
S is not important for the performance of quantum circuits by the Solovay-Kitaev
theorem.

23

|0⟩ H •

|0⟩

Figure 1.1: A simple quantum circuit that produces the state (|00⟩+ |11⟩)/
√

2 before
measuring.

Proposition 1.6 ((Kitaev, 1997)). For any universal gate set S closed under inverses
(i.e. if V ∈ S then V −1 ∈ S), any unitary V ∈ C2n×2n on n qubits can be ε approximated
using O(4npolylog(1/ε)) gates in S.

Therefore, as long as quantum computation is decomposed into a sequence of
unitaries each acting on a constant number of qubits, the choice of universal gate set
does not really matter.

Quantum circuits So far, we have described quantum states, measurements, and
unitary operations. Often, these elements are combined to describe quantum com-
putation in the language of quantum circuits. In the quantum circuit model, qubits
are represented using wires that are acted on by unitary gates and measurements. A
simple example of a quantum circuit is shown in Figure 1.1. This circuit starts with
two qubits initialized to |0⟩. A Hadamard gate (H) is applied to the first qubit. Next,
a controlled not (CNOT) gate is applied from the first qubit to the second. Finally,
both qubits are measured in the standard basis. While not shown in this example,
classical information can be represented in a quantum circuit using two parallel lines
as seen in our Figure 2.1. Such classical information is often used to control the
application of a quantum gate. In Figure 2.1, the Z gate is only applied if the classical
bit (generated from a measurement earlier in the circuit) has the value one.

24

Part I

Time and space for quantum and
classical computation

25

Chapter 2: Tight bounds on the spooky pebble
game

2.1 Introduction

Pebble games provide a convenient abstraction for reasoning about space and
time usage in computation. Pebble games were first used in (Sethi, 1973) to determine
optimal register allocation for computing straight line programs. In (Hopcroft et al.,
1977) the authors applied the irreversible pebble game to show that any computation
running on a Turing machine in time T (n) can be executed on another Turing machine
with space T (n)/ log T (n). Since then, pebbling has found uses in establishing time-
space trade-offs for computing functions including matrix vector products ((Tompa,
1980)) and memory hard functions based on hashing (eg. (Paul et al., 1976; Lengauer
and Tarjan, 1982; Dwork et al., 2005; Ren and Devadas, 2016; Blocki and Zhou, 2017)).
In (Bennett, 1989), Bennett used a reversible pebble game to give a general mechanism
for reversibly simulating irreversible computation. As an example of more recent work,
(Blocki et al., 2022) applied the reversible pebble game to analyze the post-quantum
security of these memory hard functions.

In (Gidney, 2019) Gidney introduced a new spooky pebble game to study
time-qubit trade-offs in quantum simulation of classical computation on inputs in
superposition. Many quantum algorithms use simulation of classical computation in
superposition as a subroutine. For example, applying Grover’s search (Grover, 1996)
to find an x such that f(x) = 1, requires a quantum circuit that implements the
following mapping: ∑

x

αx |x⟩ |jx⟩ →
∑

x

αx |x⟩ |jx ⊕ f(x)⟩

which represents the evaluation of f on inputs in superposition. Since quantum
gates are unitary (and therefore reversible) operations, f(x) has traditionally been
simulated with a reversible circuit. This comes with a time-space overhead that is

26

often overlooked. The spooky pebble game uses intermediate measurements to make
such a simulation more efficient than would be possible using reversible circuits. We
expand upon this pebble game and show tight time-space trade-offs for how efficiently
it can simulate classical computation.

While the spooky pebble game can reduce the number of qubits needed to
perform a computation, it is worth noting that it introduces new classical ancillary
bits and does not reduce the total memory (qubits plus classical bits). Nonetheless,
qubits are a much more limited resource than classical bits (Oskin et al., 2002). As
such, we believe that this trade-off makes the spooky pebble game pragmatic for
designing algorithms that run on quantum computers.

Previous work For any ε ∈ (0, 1] the reversible pebble game can be used to
reversibly simulate any irreversible computation that runs in time T with S space
using O(T 1+εS−ε) steps and O(S(1 + log(T/S))) space (Bennett, 1989; Levine and
Sherman, 1990). However, the asymptotic notation above hides a constant factor cost
of approximately ε21/ε in the space term (Levine and Sherman, 1990).

Using the reversible pebble game, space O(T εS1−ε) is sufficient to simulate
irreversible computation in linear time, but similarly, this result features a steep but
constant 21/ε cost in the time of the simulation (Král’ovič, 2001). Král’ovič also showed
that any simulation via reversible pebbling the line with O(S · (1 + log T/S)) qubits
must use Ω(T ·(1+log T/S)) steps — a lower bound that is not achieved by any known
reversible pebbling algorithm (Král’ovič, 2001). In (Blocki et al., 2022) the authors
used a parallel version of the reversible pebbling game to show (parallel) time-space
efficient algorithms for computing cryptographic objects known as data-independent
memory hard functions.

Other works have tried to directly improve the qubit efficiency of running
classical subroutines on a quantum computer without going through reversible simula-
tion. In (Perdrix and Jorrand, 2006) the authors showed how a classically controlled

27

quantum Turing machine can simulate a classical Turing machine with no loss in time
or space complexity. In (Ablayev et al., 2002; Cosentino et al., 2013) the authors
showed that one qubit is sufficient to simulate NC1 in polynomial time.

In (Gidney, 2019), Gidney introduced the idea of measurement-based uncom-
puting with his spooky pebble game. The spooky pebble game extends the reversible
pebble game by allowing intermediate measurements that enable irreversible opera-
tions. The pebble game is called spooky because these measurements have a chance to
produce undesired phases (or ghosts) that need to be removed before completing the
computation; otherwise they will obstruct the desired interference patterns generated
by subsequent gates. Gidney showed how the spooky pebble game can be used to
simulate any classical computation with only a constant factor blow-up in space and a
quadratic blow-up in the running time, which is impossible for reversible computation
(Král’ovič, 2001). The spooky pebble game was recently extended to work on arbitrary
DAGs in (Quist and Laarman, 2023, 2024), similar to the reversible pebble game.
These works developed a SAT solver that can compute the minimum runtime necessary
to solve the spooky pebble game on an arbitrary DAG. In (Quist and Laarman, 2024)
the authors recently proved that deciding if a DAG can be pebbled with s pebbles is a
PSPACE-complete problem, although their hard case requires a DAG with maximum
in-degree s− 1.

Our results We build on the spooky pebble game framework introduced by Gidney
(Gidney, 2019) and prove asymptotically tight upper and lower bounds on spooky
pebbling the line. For any pebble bound s we show the existence of time-optimal
pebbling strategies of a particular form that match our algorithms. We then are able
to lower bound the number of steps needed to pebble the line with any algorithm of
this form to get a lower bound on the number of steps needed in the spooky pebble
game.

We delineate the entire achievable frontier of the spooky pebble game and our
tight trade-off bounds can be applied in many different regimes. For example, for

28

any ε ∈ (0, 1], any classical computation that runs in T time with S space can be
simulated on a quantum computer using only O(T/ε) steps and O(T 1+εS1−ε) qubits.
This is an exponential improvement in ε over the reversible bound in (Král’ovič, 2001).
We also show that any computation can be simulated in O(T 1+εS−ε/ε) steps with only
O(S/ε) qubits, which is fewer qubit than would be possible (independent of the time
bound) with reversible pebbling (Li and Vitanyi, 1996; Li et al., 1998; Král’ovič, 2001).
Interestingly, when ε = 1/ log(T/S), this matches the (unobtained) lower bound for
reversible pebbling proved in (Král’ovič, 2001).

We then show that any irreversible pebbling can be converted to a spooky
pebbling using only one additional pebble. This gives us that, in general, the number of
pebbles needed for the spooky pebble game is PSPACE-hard to approximate. Finally
we discuss the spooky pebble game on directed acyclic graphs (DAGs) where we
show that it is possible to spooky pebble the complete binary tree of height h (i.e.,
n = 2h − 1 nodes) using h + 1 pebbles and O(n log n) steps. This is fewer pebbles
than is possible in the reversible pebble game, addressing an open question posed in
(Quist and Laarman, 2024) regarding efficient algorithms for the spooky pebble game
on trees.

2.2 Preliminaries

Reversible computation We say that a computation is logically reversible if, after
every time step, there is a unique predecessor state for the computation. For example
a Turing machine that moves its head from left to right inverting the bits on its tape
represents a reversible computation while one that instead overwrites its tape with
zeroes is not. When a series of quantum transformations are applied to a quantum
system, it results in a unitary transformation U being performed on the system.
Since the original state of a measurement free quantum algorithm can be restored by
applying the inverse operation U †, measurement-free quantum computation must be
reversible (Rieffel and Polak, 2011). This means that implementing classical algorithms

29

using a quantum computer often implicitly involves the additional step of making the
algorithm reversible.

Of the strategies for making classical computation reversible the most widely
used method is the reversible pebble game (Bennett, 1989). In the reversible pebble
game, steps of an irreversible algorithm are simulated reversibly by placing and
removing pebbles on a line, or more generally any directed acyclic graph (DAG). The
largest number of pebbles s placed at any time corresponds to the space needed for
the simulation and the number of steps τ corresponds to the time of the simulation.

Uncomputation Recycling space is key to space efficiency. But while irreversible
algorithms can simply erase values whenever they are no longer needed, such values
require more care to dispose of in reversible and quantum computation. In order to
erase a value in a reversible manner, it is necessary to end up in a state where it
would be possible to efficiently recompute the deleted value. Thus uncomputation,
the reversible analog of deletion, requires access to the same information needed to
compute the deleted value. The importance of uncomputation in quantum circuits it
twofold: (1) qubits are an expensive resource for quantum algorithms so it is important
to design them so that they can run on as few qubits as possible and (2) failing to
uncompute values in a quantum circuit results in entangled garbage that prevents
desired interference patterns (Paradis et al., 2021).

We say a quantum circuit uncomputes a function f if it can perform the
following mapping on any quantum state where the xi are all distinct:

∑
i

αi |xi⟩ |f(xi)⟩ →
∑

i

αi |xi⟩ |0⟩

Note that the standard unitary Uf for computing f , which performs the mapping
Uf |x⟩ |b⟩ = |x⟩ |b⊕ f(x)⟩ is also a unitary that uncomputes f . Carefully balancing
computation and uncomputation is vital for designing space and time efficient quantum
algorithms.

30

•
b ∈ {0, 1}

•

|x⟩
Uf Uf

|x⟩

|f(x)⟩ H

(−1)bf(x) |x⟩ |0⟩
Z |0⟩

Figure 2.1: Circuit to ghost f(x) and later correct the phase in order to overall
uncompute f(x) using measurement-based uncomputing, as described in (Gidney,
2019).

Ghosting Gidney points out that full uncomputation is not always necessary for
recycling qubits when simulating classical algorithms in superposition. Instead of full
uncomputation, he developed a clever scheme using intermediate measurements to
“compress” qubits into classical bits (Gidney, 2019). We say that a quantum circuit C

ghosts a register if it can perform the following mapping on any quantum state where
the xi are all distinct:

∑
i

αi |xi⟩ |yi⟩
C−→
∑

i

αi(−1)b·yi |xi⟩ |0⟩

and b is a classical bitstring returned by the circuit. In (Gidney, 2019) Gidney calls
this (−1)b·yi phase a ghost of y, as the logical value of this register has been erased and
replaced with a phase. Since the logical value of the register has been zeroed out, it can
be used as if it were a fresh ancillary register for any subsequent computation acting
only in the standard basis. However, for a quantum circuit to behave correctly, this
ghost must be removed before acting on this register in another basis. By recreating
the state of the y register as it was before ghosting and recalling the classical bitstring
b, the ghost can be removed by applying a b-controlled Z gate to the register. Finally,
uncomputation can be used to properly uncompute the register. While this might
seem like uncomputation with extra steps, we will see that reusing registers before
we could uncompute their values allows for more qubit and gate efficient quantum
algorithms.

31

b ∈ {0, 1}
•

|x⟩
Ef Uf

|x⟩

|f(x)⟩ G

(−1)bf(x) |x⟩ |0⟩
|0⟩

Figure 2.2: The circuit from Figure 2.1 using G and Ef circuit macros. Note that the
• on the classical wire above the Ef gate represents a controlled application of the
component Z gate rather than a controlled application of an entire module.

Ghosting is not a unitary operation and thus requires intermediate measure-
ments: for example, if you tried to ghost the second qubit in the state (|00⟩+ |01⟩)/

√
2

and receive b = 0, then you would end up with the non-normalized state (|00⟩ +
|00⟩)/

√
2 =
√

2 |00⟩. Importantly, note that ghosting is only defined to perform this
mapping when the xi are distinct, as that is sufficient to prevent interference between
basis states and make it a norm-preserving operation.

In (Gidney, 2019) Gidney shows that ghosting can be performed by measuring
in the Hadamard basis, recording the result as classical output b, and then using b to
apply a controlled X-gate to the register. Figure 2.1 shows what this circuit looks like,
as the gates on the left “ghost” the f(x) register and the gates on the right recompute
f(x) before removing the ghost and uncomputing f(x). Importantly, the gates that
ghost the f(x) register do not use the x register, so these operations can be performed
even when the x register is holding a different value. However, removing the ghost
then requires the presence of x.

For compactness, we compress the highlighted gates on the left and the right
of Figure 2.1 into single gates G and Ef as shown in Figure 2.2. When performing a
classical subroutine on a quantum computer, the G gate can be applied to any register
at any time to reset the logical value of its qubits (ghosting). However, whenever
this is done, the Ef gate must be reapplied later in the circuit when it is possible to
recompute the original value in the erased register and remove the phase (unghosting).

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 1 1

2 2 2

3 3 3

4 4

5

a

b

c

d

e

Figure 2.3: Qubit efficient computation of F (x) = f5 ◦f4 ◦f3 ◦f2 ◦f1(x) using ghosting.
Again the • on the classical wire above the Efi

gates represents a controlled application
of the component Z gate rather than a controlled application of an entire module.

Figure 2.3 shows how these G and Ef gates can be applied to compute a
function with less qubits than would be possible using reversible simulation. This
application is general: we can think of a function f as mapping a computer from
its current logical configuration to its configuration at the next time step. Since the
measured value b must be stored from the time a value is ghosted until the time when
its ghost is removed, we are not able to reduce the overall space complexity of the
simulation; we are only able to reduce the number of required qubits.

Gidney’s original formulation of the spooky pebble game only produced a ghost
when the returned value b ̸= 0 since when b = 0 no phase is added (Gidney, 2019).
This version of the spooky pebble game is natural in settings like modular arithmetic
circuit where it is desirable to ghost individual bits (Luongo et al., 2024). However
in this work, we apply the G gate on registers containing many qubits where the
probability that all measured qubits yield zero will be negligibly small. As such, we
make the simplifying assumption that ghosts are always created when we apply the G
gate.

Pebble games The concept of interweaving computation, uncomputation, and
ghosting to efficiently simulate classical computation can be perfectly encapsulated
by an appropriate pebble game. In a pebble game we are given a DAG where the
nodes represent the variables involved in a computation and the edges show the

33

dependencies for computing these variables. For example the computation c = a+ b

can be represented with three nodes for a, b, c and edges a→ c and b→ c. A pebble
can be placed on a node to indicate that the variable is currently stored in a register
for the computation. Thus, a pebble can be placed on node c only when there are
already pebbles on a and b. Additional restrictions on when pebbles can be placed
or removed create different pebble games that can be used to simulate irreversible,
reversible, or quantum computation with ghosting.

Such graph representations naturally characterize computations such as straight
line programs, circuits, and data-independent cryptographic functions acting on words
(registers) of size w. In this setting, pebble games directly model time-space trade-
offs—as a pebbling of the DAG for a function f with s pebbles placed concurrently
and τ steps corresponds to a way to compute f with O(ws) bits in O(τ) steps.

While pebble games are defined for general DAGs, it is possible to think of
each pebble as representing a snapshot of the entire state of an arbitrary sequential
computation and then represent the computation as a pebble game on a line. If you
can construct a pebbling Pn that works on the line of length n in τn steps and uses at
most sn concurrent pebbles, this leads to a naive way to simulate a computation that
requires T time and S space in O(S · τT) steps1 and O(S · sT) space (or qubits). A
more clever way to apply pebbling to simulation involves assigning S states to each
pebble, which lets us pebble a shorter line without increasing the asymptotic space
needed per pebble or the time needed per step.

Proposition 2.1 (Implicit in (Bennett, 1989)). Let M be an irreversible sequential
machine that computes a function f with T steps using S bits. Let PT/S be a (spooky)
pebbling strategy for the line of length T/S that runs in τT/S steps and uses at most
sT/S concurrent pebbles. Then there exists a quantum circuit that can compute f with
O(S · τT/S) gates and O(S · sT/S) qubits.

1There is a multiplicative term of S here because each state must be copied before simulating the
next step.

34

We now more formally define the irreversible, reversible, and spooky pebble
games that we will use throughout this chapter.

Definition 2.2. The irreversible pebble game is a one player game on a DAG
G = (V,E) where the goal is to place a pebble on exactly the nodes T ⊆ V called targets
with out-degree zero. A pebbling (strategy) is a list of subsets of V . P = [P0, . . . ,Pτ]
where P0 = ∅ and Pτ = T . A strategy is valid as long as

• |Pi△Pi+1| = 1, and

• If v ∈ Pi+1 \ Pi, then parents(v) ⊆ Pi.

We can analyze a pebbling by looking at the number of pebbles and steps it
requires.

Definition 2.3. The number of steps T (P) in a pebbling strategy P = [P0, . . . ,Pτ] is
τ .

Definition 2.4. The number of pebbles S(P) in a pebbling strategy P = [P0, . . . ,Pτ]
is maxi∈[τ] |Pi|.

When restricted to reversible computation, we can modify Definition 2.2 to get
a pebble game that naturally models the restrictions imposed by reversibility.

Definition 2.5. The reversible pebble game has the same setup as the irreversible
pebble game in Definition 2.2. A strategy is valid as long as

• |Pi△Pi+1| = 1,

• If v ∈ Pi+1 \ Pi, then parents(v) ⊆ Pi, and

• If v ∈ Pi \ Pi+1, then parents(v) ⊆ Pi.

35

The pebble game capturing ghosting admits better pebbling strategies than are
possible in the reversible pebble game, assuming we are concerned with the number of
qubits rather than the total space complexity. Given an irreversible pebbling, we can
exactly characterize when it produces a ghost.

Definition 2.6. The ghosting sequence G(P) = [G0, . . . ,GT (P)] is defined recursively
by G0 = ∅ and Gi+1 = (Gi ∪ {v ∈ Pi|parents(v) ̸⊆ Pi}) \ Pi+1.

The ghosting sequence cumulatively tracks the locations where pebbles were
removed without access to their parents. These are exactly the steps that prevent a
strategy from being a valid strategy for the reversible game; a valid reversible pebble
game strategy is exactly a strategy with a ghosting sequence consisting only of empty
sets. The spooky pebble game relaxes this condition to only requiring the last ghost
set to be empty. Note that ghosts can be removed by placing a pebble over them.

Definition 2.7. The spooky pebble game has the same setup as the irreversible
pebble game in Definition 2.2. A strategy is valid as long as

• |Pi△Pi+1| = 1,

• If v ∈ Pi+1 \ Pi, then parents(v) ⊆ Pi, and

• In the ghosting sequence G(P), the final ghost set Gτ = ∅.

Note that by construction, the spooky pebble game always lies somewhere
between the reversible and irreversible pebble games. Therefore, it is natural to
compare it to these other pebble game and investigate when its behavior is closer to
that of reversible or irreversible pebbling.

Figure 2.4 gives an example of a spooky pebbling on the line of length 5 using
only 3 pebbles. Note that this models the same computation performed in Figure 2.3.
Each numbered step in Figure 2.4 corresponds to the state of the quantum circuit
in Figure 2.3 after the corresponding numbered gate is applied; a wire on row c in

36

Figure 2.3 occurs exactly at the same numbered steps as a pebble at column c in
Figure 2.4 and corresponds to storing the value f3 ◦ f2 ◦ f1(x) in quantum memory
within both models. In the reversible pebbling game, this task requires 4 pebbles.
The ability to ghost pebbles and remove the ghosts at later steps lets us use one fewer
pebble, showing that the spooky pebble game can be used to save qubits.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

0
ab c d e

Figure 2.4: A spooky
pebbling of the line.
Here each ◦ indicates
a pebble and each ∼
indicates a ghost.

Rather than describe a pebbling as a list of pebbled
nodes, we will sometimes describe algorithms that generate
these lists. These algorithms feature the functions “place” and
“remove”. The t’th call to these functions defines the value of
Pt from Pt−1 as follows:

• place(vi): (Pt) = (Pt−1 ∪ {vi})

• remove(vi): (Pt) = (Pt−1 \ {vi})

Intuitively, the place instruction creates a pebble on a node
while the remove instruction destroys that pebble. For the
spooky pebble game, ghosts are implicitly created by remove
instructions according to Definition 2.6.

Given a spooky pebbling algorithm and a node vi, we
define a notation for the first and last time that this node
contains a pebble:

Definition 2.8. Let First(vi,P) = min({t|vi ∈ Pt}) and Last(vi,P) = max({t|vi ∈
Pt}).

2.3 Pebbling, unpebbling, and unghosting

Before discussing algorithms and lower bounds for playing the spooky pebble
game on the line, we will define a number of subroutines in such pebbling algorithms.
These subroutines describe sequence of steps within a pebbling algorithm that seek

37

to complete some concrete objective. An unpebbling subroutine Up({v1, . . . , vn}) is
a sequence of place and remove instructions that starts with a pebble only on vn

and ends with no pebbles or ghosts on v1, . . . , vn. Likewise, an unghosting subroutine
Ug({v1, . . . vn}) starts with no pebbles on v1, . . . , vn but a ghost on vn and ends with no
pebbles or ghosts on v1, . . . , vn. Note that the definitions of both of these subroutines
do not preclude the existence of ghosts on additional nodes in the initial step. As
long as vn is a sink of {v1, . . . , vn} (which is true in the case of the line graph), any
unpebbling or unghosting subroutine must place at least one pebble on v1, . . . , vn−1 in
order to remove the pebble or ghost on vn. In doing so, the subroutine will overwrite
any additional ghosts present at the start of its execution.

We are primarily interested in these subroutines as they make it easier to
describe pebbling algorithms. In particular pebbling algorithms have a bit of an
awkward asymmetry where they first have to place a pebble on the target node(s)
and then run a subroutine to remove the remaining ghosts and pebbles. On the other
hand, unpebbling and unghosting subroutines have a natural recursive structure: after
removing a pebble or ghost from vn the same subroutine can be used on a smaller
input to clean up the rest of the graph.

It turns out that the pebble cost s and time cost τ of pebbling, unpebbling, and
unghosting tasks are closely related. Thus, we can reason about easier to work with
unpebbling and unghosting tasks to make claims about efficient pebbling algorithms.
In this section, we will prove some key lemmas that give us the following connections
between the costs of these tasks.

Theorem 2.9. Let TP (n, s), TUP (n, s), TUG(n, s) be the minimum number of steps
needed to respectively pebble, unpebble, or unghost the line of length n using at most s
pebbles. Then:

TP (n+ 1, s+ 1) = TUG(n, s) + 1, TUG(n, s) = TUP (n, s)± 1

We start by presenting a key lemma showing a time efficient pebbling sequence
to place pebbles on any desired set of nodes.

38

Lemma 2.10. Let G = (V,E) be a line and S ⊆ V be such that |S| = s. Then there
exists a valid sequence of pebbling instructions that places pebbles on exactly S that is
time-optimal and uses at most s+ 1 pebbles.

Proof. Consider the following pebbling sequence:
I({v1, . . . , vn}, S):

k = argmaxivi ∈ S
place(v1)
for i ∈ [2, k]:

place(vi)
if(vi−1 ̸∈ S):

remove(vi−1)

The above sequence uses at most s+ 1 pebbles and takes exactly 2k − s steps. Since
placing a pebble on vk requires placing pebbles on each node before it and we want
to only end with pebbles on S, any pebbling sequence that completes this task must
place at least k pebbles and remove k − s pebbles. Therefore, the above pebbling
sequence uses the time-optimal number of steps.

Now we can use this result to give a tight relationship between pebbling and
unghosting the line. We first show how an unghosting subroutine can be converted
into a pebbling algorithm.

Lemma 2.11. Let Ug be an unghosting algorithm for the line of length n that uses s
pebbles and takes τ steps. Then there exists a pebbling algorithm on the line of length
n+ 1 that uses (s+ 1) pebbles and takes at most (τ + 1) steps.

Proof. We take Ug and modify it by adding a pebble instruction on vn+1 immediately
after step First(vn,Ug) — which must have been a pebble instruction on node vn. Since
vn starts with a ghost, Ug must place a pebble at vn during some step. The resulting
algorithm is a valid pebbling that uses at most τ + 1 steps and s+ 1 pebbles.

Next we show that Lemma 2.11 is tight.

39

Lemma 2.12. There exists a pebbling algorithm P on the line of length n+1 that uses
s+ 1 pebbles and takes τ + 1 steps if and only if there exists an unghosting algorithm
Ug on the line of length n that uses s pebbles and takes τ steps.

Proof. In Lemma 2.11, we showed how an unghosting can be modified to give a
pebbling. Now we show that any pebbling can be modified to give an unghosting.

Let t be the last step of P operating on vn+1. This must be a pebbling step, so
both vn and vn+1 are in Pt. Divide P into two components around this point, Ppre for
the first t steps and Ppost for the remaining steps. Since Ppre must have spent at least
one step on pebbling each of vn and vn+1, there must be some algorithm P∗

pre running
in at most t − 2 steps that ends in Pt \ {vn, vn+1}. Moreover, by Lemma 2.10, P∗

pre

may be constructed to require at most |Pt \ {vn, vn+1}|+ 1 ≤ s pebbles.

Let P∗
post be a sequence of pebbling instructions derived from Ppost by removing

any instructions operating on vn before Last(vn,Ppost), then inserting an instruction
placing a pebble on vn immediately before that last removal of vn. This is valid, as
the new placement occurs immediately before a removal (so the predecessor of vn is
pebbled), and no operations occur on vn+1 that would be affected by changing whether
a pebble is present on vn.

P∗
pre followed by P∗

post is then a valid unghosting of the line graph up to vn,
excluding vn+1. Since P∗

pre is at least 2 steps shorter than Ppre and P∗
post is at most

1 step longer than Ppost, the composition takes at most τ steps. Moreover, the
composition requires at most s pebbles, P∗

pre by Lemma 2.10 and P∗
post because it

operates as in Ppost but without an extra pebble sitting on vn+1.

We can also characterize the relationship between unghosting and unpebbling.

Lemma 2.13. Let Ug be any unghosting subroutine for the line of length n that uses
s pebbles and requires τ steps. Then there exists an unpebbling subroutine using at
most s pebbles and τ + 1 steps.

40

Proof. Define Up by first removing the pebble at vn to create a ghost and then running
Ug.

Lemma 2.14. Let Up be any unpebbling subroutine for the line of length n that uses
s pebble. Then there exists an unghosting subroutine that uses at most s pebbles and
τ + 1 steps.

Proof. Define Ug by running Up, but before Last(vn,Up), skip all preexisting operations
on vn, and immediately before Last(vn,Up), add a new step to place a pebble on vn.
Ug only differs from Up by sometimes not having a pebble on vn when Up does, so it
uses at most as many pebbles, and it inserts only a single new step.

2.4 Algorithms for spooky pebbling the line

First we show asymptotically tight results for playing the spooky pebble
game on the line graph, which characterizes the achievable time-qubit tradeoffs for
simulating arbitrary irreversible classical computation on inputs in superposition
using intermediate measurements. We start by constructing a time-efficient pebbling
strategy for any bound s ≥ 3 on the number of allowed pebbles.

Lemma 2.15. For any s,m ∈ N such that n ≤
(

m+s−1
s−1

)
, there exists an unghosting

algorithm for the line of length n that uses at most s pebbles and O(mn) steps.

Proof. We consider the following unghosting algorithm that uses s pebbles for when
the line has length exactly n =

(
m+s−1

s−1

)
for some value of m:

Ug({v1, . . . , vn}, s): // Let n =
(

m+s−1
s−1

)
for some value of m.

if (n ≤ s):
for i ∈ [1, n]:

place(vi)
for i ∈ [0, n− 1]:

remove(vn−i)
else:

let k =
(

m+s−2
s−1

)
41

place(v1)
for i ∈ [2, k]:

place(vi)
remove(vi−1)

run Ug({vk+1, . . . vn}, s−1) // Line of length n− k =
(

m+s−2
s−2

)
.

remove(vk)
run Ug({v1, . . . , vk}, s) // Line of length k =

(
m+s−2

s−1

)
.

Note that if m′ = m − 1 then k =
(

m′+s−1
s−1

)
, so our assumption on n holds in the

recursive cases. While the recursive calls to Ug may run on lines that contain ghosts
on nodes other than the target, removing the ghost at the target will require placing
pebbles on all other nodes. This will remove any additional ghosts present at the start
of the recursive call. To upper bound the number of steps required to run Ug on a
line of length n =

(
m+s−1

s−1

)
with s pebbles, we will upper bound the number of steps

that act on any node and multiply that by the total number of nodes. Let Ti(m, s) be
the number of times Ug acts on node vi and T ∗(m, s) = maxi Ti(m, s). Then directly
from the construction of Ug we have:

T ∗(m, s) ≤
2 s ≥

(
m+s−1

s−1

)
max (2 + T ∗(m− 1, s), T ∗(m, s− 1)) s <

(
m+s−1

s−1

)
.

In other words, when s ≥ n, each node has a pebble placed and removed at most once.
Otherwise, when s < n, the node visited the most times either is before vk+1 and gets
a pebble placed and removed and is part of the call Ug({v1, . . . , vk}, s) or is after k
and is part of the call Ug({vk+1, . . . vn}, s− 1).

When m or s is 1, we observe that s ≥
(

m+s−1
s−1

)
, and so the base case T ∗(1, s) =

T ∗(m, 1) = 2. Since every recursive step at most increases T ∗ by 2 every time that m
increases by 1, it follows that T ∗(m, s) ≤ 2m. This lets us conclude that when the
line has length n =

(
m+s−1

s−1

)
, we can unghost it using O(mn) steps.

When n <
(

m+s−1
s−1

)
we observe that the above unghosting algorithm can be

truncated to the shorter line of length n by ignoring steps on nodes after vn. Again

42

the largest number of steps on any node is at most 2m so we can conclude that the
unghosting algorithm takes at most 2mn steps.

Finally, we can convert this to a pebbling algorithm with Lemma 2.11.

Theorem 2.16. For any s,m ∈ N such that n ≤
(

m+s−2
s−2

)
+ 1, there exists a pebbling

algorithm for the line of length n that uses at most s pebbles and O(mn) steps.

As an immediate corollary of this result, we are able to obtain a strategy for
pebbling a line of arbitrary length using only 3 pebbles. This algorithm was first
presented in (Gidney, 2019) and our Theorem 2.16 is a generalization of this algorithm
to more pebbles.

Corollary 2.17. There exists a pebbling algorithm for the line of length n that uses 3
pebbles and O(n2) steps.

While the formal statement of Theorem 2.16 is hard to parse, it is a strict
improvement over the best possible tradeoffs between pebbles and steps in the reversible
pebble game. Corollary 2.17 already improves on the Ω(log n) lower bound on the
number of pebbles needed to reversibly pebble the line of length n. Here we state
some corollaries of Theorem 2.16 that help compare the performance of our spooky
pebbling algorithm to known results for the reversible pebble game.

Corollary 2.18. There exists spooky pebbling algorithms on the line of length n that
use s pebbles and run in O(sn1+1/(s−2)) steps for all s ≥ 3.

Proof. Set m =
⌈
(s− 2)(2n1/(s−2) − 1)

⌉
and observe that:

(
m+ s− 2
s− 2

)
+ 1 ≥

(
m+ s− 2
s− 2

)s−2

=

⌈
(s− 2)(2n1/(s−2) − 1)

⌉
+ s− 2

s− 2

s−2

43

=

⌈
(s− 2)2n1/(s−2)

⌉
s− 2

s−2

≥
(
2n1/(s−2)

)s−2

≥ n

Therefore by Theorem 2.16 there exists a pebbling on the line of length n using s

pebbles and O(sn1+1/(s−2)) steps.

We can compare Corollary 2.18 to the following lower bounds on the reversible
pebble game.

Proposition 2.19 ((Li et al., 1998)). Any reversible pebbling on the line of length n
requires Θ(log n) pebbles.

When s is o(log n) then Corollary 2.18 shows the existence of a spooky pebbling
for parameters where there cannot be a reversible pebbling. Setting s to Θ(log n)
gives a spooky pebbling algorithm where the number of steps matches a known lower
bound on what is possible with the same number of pebbles in the reversible pebble
game.

Proposition 2.20 ((Král’ovič, 2001)). Any reversible pebbling on the line of length n
using the minimum number of pebbles requires Ω(n log n) steps.

The best known reversible pebbling using this many pebbles requires O(nlog2(3))
steps (Li and Vitanyi, 1996). We conjecture that the bound in Proposition 2.20 is not
tight for reversible pebbling and that Corollary 2.18 gives a spooky pebbling algorithm
that is more time efficient than the best possible reversible pebbling with this number
of pebbles. Král’ovič gives another upper bound on reversible pebbling algorithms
that use O(n1/k) pebbles.

Proposition 2.21 ((Král’ovič, 2001)). For any fixed k, there is a reversible pebbling
algorithm for the line of length n that uses O(n1/k) pebbles and O(2kn) steps.

44

We are able to improve this result by an exponential factor in k within the
spooky pebble game.

Corollary 2.22. For any fixed k, there is a spooky pebbling algorithm for the line of
length n ≥ (2k)2k that uses O(n1/k) pebbles and O(kn) steps.

Proof. Set m = 2k and s =
⌈
n1/k

⌉
. Then

(
m+ s− 2
s− 2

)
+ 1 ≥

(
2k +

⌈
n1/k

⌉
− 2

⌈n1/k⌉ − 2

)

≥

2k +
⌈
n1/k

⌉
− 2

2k

2k

≥ n2

(2k)2k

≥ n

Therefore by Theorem 2.16 there exists a spooky pebbling on the line of length n

using O(n1/k) pebbles and O(kn) steps.

2.5 Lower bounds for spooky pebbling the line

To show that our construction in Section 2.4 is optimal for any pebble bound,
we prove an asymptotically matching lower bound that applies to any sequential spooky
pebbling algorithm on the line graph. We do this by first proving, for any pebble
bound s, the existence of a time-optimal spooky pebbling strategy of a particular
form. Then we use a tree based argument to prove that any such algorithm with s

pebbles that spooky pebbles the line of length n ≥
(

m+s−2
s−2

)
+ 1 requires Ω(mn) steps.

Theorem 2.23. For any line of length n, any pebble bound s, and any positive integer
m where n ≥

(
m+s−2

s−2

)
+ 1, a spooky pebbling of that line with at most s pebbles uses

at least Ω(mn) steps.

45

2.5.1 The existence of well-structured optimal pebbling algorithms.

Let P = [P0, . . . ,Pτ] be an arbitrary spooky pebbling of the line with nodes
v1, . . . vn. We will show that P uses at least as many steps as a spooky pebbling
algorithm matching P′ in Lemma 2.24.

Lemma 2.24. Let P be an arbitrary spooky pebbling of the line using T (P) = τ steps
and S(P) = s pebbles. Then there exists k, pebbling algorithm P∗, and unpebbling
algorithm U∗

p such that the pebbling algorithm P′ described below has T (P′) ≤ τ and
S(P′) ≤ s.

P′({v1, . . . , vn}):
place(v1)
for i ∈ [2, k]:

place(vi)
remove(vi−1)

run P∗({vk+1, . . . vn})
run U∗

p({v1, . . . , vk})

In other words, P′ is the same algorithm as in Theorem 2.16, but with the
choice of k determined by the values of n and s in some arbitrary way. We prove
Lemma 2.24 over the course of Section 2.5.1.

Lemma 2.25. ∀i ∈ [2, n− 1], Last(vi,P) < Last(vi−1,P).

Proof. Let t = Last(vi,P), which implies that there is never a pebble placed on vi

after Pt. By the definition of a spooky pebbling we require that Gτ = ∅, so vi ̸∈ Gt+1

as we never place a pebble on vi after step t. Since this is a valid pebbling, we can
conclude that vi−1 ∈ Pt and thus Last(vi,P) < Last(vi−1,P).

Definition 2.26. Let First(vn,P) = t. We call P sweep-first if a pebble is placed at
vn only once and each vi has at most one pebble placed on it before step t.

Note that I in the proof of Lemma 2.10 is sweep first subroutine and only uses
s pebbles when vk−1 ∈ S. Using this result, we can turn any pebbling into one that is
sweep first.

46

Lemma 2.27. Let P be any spooky pebbling algorithm where T (P) = τ and S(P) = s.
Then there exists a sweep-first pebbling algorithm P′ where T (P′) ≤ τ and S(P′) ≤ s.

Proof. Let t be the last step where P places a pebble on vn. We know that t <
Last(vn−1,P). Thus, by Lemma 2.25 we know that t < Last(vi,P) for all i < n. P′ will
place pebbles on exactly Pt in t′ = 2n− |Pt| steps by running I({v1, . . . vn},Pt). We
know that t′ ≤ t since each vi has a pebble placed and each node not in Pt must have had
a pebble removed before step t in P. We define P′ = [P0,P

′
1, . . . ,P

′
t′ = Pt,Pt+1, . . . ,Pτ].

Since t′ ≤ t we know that T (P′) ≤ τ . We can additionally conclude that S(P′) ≤ s

since Pt must contain a pebble at vn−1 and so I only uses s pebbles. Note that while
P and P′ may have different ghosting sequences, P′ is still a valid spooky pebbling.
This is because P must place a pebble (and subsequently remove it without creating a
ghost) at every location where P′ had a ghost during step t′ due to Lemma 2.25.

Now we are ready to prove Lemma 2.24.

Proof of Lemma 2.24. By Lemma 2.27 we can assume that P is sweep-first. Without
loss of generality, let P be the algorithm with T (P) = τ and S(P) = s that maximizes
over all algorithms the least value of k where vk ∈ PFirst(vn,P). Let t = First(vn,P).
By our choice of P and k, for all i < k, P must place and remove a pebble at vi; thus
we can rearrange these steps from P to match lines 2 through 5 of P′. Since P is a
sweep-first pebbling we know that these are the only instructions acting on v1, . . . , vk

before step t. We now partition the remaining instructions of P into P∗, the set of all
instructions acting on nodes vk+1, . . . , vn, and U∗

p, the set of all instructions acting on
v1, . . . , vk — while maintaining their relative order within P.

We will now show that P∗ is a valid pebbling of {vk+1, . . . , vn} that uses at
most s − 1 pebbles. Since (i) P is a valid pebbling, (ii) P′ as constructed above
maintains a pebble at vk during the execution of P∗, and (iii) instructions acting on
vertices v1, . . . , vk−1 cannot change the validity of an instruction on vk+1, . . . , vn, it
follows that P∗ is a valid pebbling. Now assume for the sake of contradiction that P∗

47

placed s pebbles during some step. Then since P uses only s pebbles, there must be
some first step t′ in P where {v1, . . . , vk} ∩ Pt′ = ∅ before the s’th pebble is placed
on vertices {vk+1, . . . , vn}. Let ℓ be the least value where vℓ ∈ Pt′ . We will construct
another sweep-first pebbling algorithm P⊥ that has ℓ > k as the least value where
vℓ ∈ P⊥

First(vn,P⊥) while maintaining T (P⊥) ≤ τ and S(P⊥) ≤ s, contradicting our
choice of P. Intuitively P⊥ will behave like P except that it has a pebble at vℓ instead
of vk during step t. P⊥ has P⊥

First(vn,P⊥) = (Pt ∪ {vℓ}) \ {vk} and reaches this state by
following the first t instructions of P, except that P⊥ ghosts vk after a pebble is placed
on vk+1 and ignores any instruction to remove vℓ before placing a pebble on vn.

After this, P⊥ continues following the instructions of P on all vertices excluding
vk, . . . vℓ until step t′ of P. At this point we know that Pt′ has empty intersection with
vk, . . . , vℓ−1 and therefore P and P⊥ have pebbles in the same positions and ghosts
on the same positions excluding vk, . . . , vℓ−1. However, Pt′ has a pebble at vℓ and
therefore must place pebbles on all of vk, . . . , vℓ−1. So if P⊥ copies all steps of P after
step t′, it will also remove any ghosts it had in vk, . . . vℓ−1. Thus, P⊥ is a valid spooky
pebbling that uses at most s pebbles and τ steps and violates our choice of P since
ℓ > k.

We know that U∗
p must be a valid unpebbling by the same reasoning as

P∗. All that remains is to show that U∗
p uses at most s − 1 pebbles. As P is a

sweep-first algorithm that uses at most s pebbles, we know that for all steps t′ > t,
|Pt′ ∩ {v1, . . . , vk}| ≤ s− 1. Thus executing the same instructions in U∗

p cannot use
more than s− 1 pebbles and P′ is a valid spooky pebbling that uses no more pebbles
or steps than P.

By Lemma 2.24 we can assume that for any fixed pebble count, there is a
minimum step algorithm that matches the structure of P′. By recursively applying
this argument, we get a recurrence relation for the minimum number of steps needed
to pebble the line of length n using at most s pebbles. In general this recurrence has

48

a tree like structure based on the choice of k at each level. However, the value of k
that minimizes the expression is the optimal choice.

Corollary 2.28. Let TP (n, s) (TUP (n, s)) be the minimum number of steps needed to
pebble (unpebble) a line of length n using at most s pebbles. Then:

TP (n, s) =


1 s ≥ 1 and n = 1
∞ s < 3 and s < n

mink∈[1,n) 2k − 1 + TUP (k, s− 1) + TP (n− k, s− 1) o.w.

The ∞ comes from observing that there is no way to spooky pebble a line
longer than s with s pebbles when s < 3. Unfortunately the above recurrence features
a call to TUP and the non-obvious choice of k makes it hard to analyze.

However, Theorem 2.9 gives us a way to relate the costs of various pebbling
subroutines. To match the upper bounds we proved in Section 2.4, we can restate
Corollary 2.28 in the language of unghosting.

Corollary 2.29. Let TUG(n, s) (TUP (n, s)) be the minimum number of steps needed
to unghost (unpebble) a line of length n using at most s pebbles. Then:

TUG(n, s) =


2 s ≥ 1 and n = 1
∞ s < 2 and s < n

mink∈[1,n] 2k − 1 + TUP (k, s) + TUG(n− k, s− 1) o.w.

Note that we cannot apply Theorem 2.9 to the base case in Corollary 2.28.
Instead, the base case in the above recurrence can be verified by inspection. By
Theorem 2.9 we know that TUP (k, s) ≥ TUG(k, s) − 1. We therefore define the
following recurrence relation that is a lower bound on TUG(n, s):

T (n, s) =


2 s ≥ 1 and n = 1
∞ s < 2 and s < n

mink∈[1,n] 2k − 2 + T (k, s) + T (n− k, s− 1) o.w.
(2.1)

49

While T (n, s) is not exactly the minimum number of steps needed to unghost the
line of length n with s pebbles, it is a sufficiently tight lower bound. A function
similar to our T (n, s) appears in (Wheeler and Hughey, 2000; Newberg, 2008) as the
solution to the backtracking problem in dynamic programming. They provide efficient
algorithms that can be used to compute the optimal value of k in each recursive call.
Another similar recurrence appears in the problem of sequence reversing, where there
is a proven lower bound similar to the one we present here (Dumas, 1995; Grimm
et al., 1996). In the rest of this section we use this recurrence relation to prove that
unghosting with at most s pebbles requires Ω(mn) steps.

2.5.2 Analysis of T(n,s)

Theorem 2.30. For any line of length n, any pebble bound s, and any positive integer
m where n ≥

(
m+s−2

s−2

)
+ 1, a spooky pebbling of that line with at most s pebbles uses

at least Ω(mn) steps.

One difficulty in analyzing our recurrence relation is that the choice of k that
minimizes this expression is not obvious, making it difficult to directly compute this
function. Instead, we will describe a family of related recurrence relations for a fixed
choice of n and s using trees with n leaf nodes and right-depth s− 1 to determine the
choices of k. The lowest valued recurrence in this family gives us the value of T (n, s).

Definition 2.31. Let T be a binary tree, T.l be the left subtree, and T.r be the right
subtree. Let |T|L be the number of leaves in a given binary tree. If |T|L = n then we
can define the recurrence relation:

TT(n, s) =


2 s ≥ 1 and n = 1
∞ s < 2 and s < n

2 |T.l|L − 2 + TT.l(|T.l|L , s) + TT.r(|T.r|L , s− 1) o.w.
(2.2)

We can think of this as being Equation (2.1) except that k is selected as
the number of leaves in the left sub-tree rather than the value that minimizes the

50

expression. This lets us fix n and s in order to see how different choices of k lead
to different values for the recurrence. Then the minimum of TT(n, s) over all trees
must equal to T (n, s). Instead of directly computing the recurrence, we can compute
TT(n, s) for a specific tree T by assigning a cost function to binary trees that is equal
to TT(n, s).

Definition 2.32. Let v be any node in a tree. We let R(v) denote the right-depth of
v, which is equal to the number of times you must take right children to reach v from
the root. We likewise define L(v) as the left-depth of v.

Definition 2.33. For any depth bound s, the cost of a binary tree Cs(T) is equal to
the sum of the costs of its nodes. Each non-leaf node of a tree has cost −2. Any leaf
node v where R(v) < s has a cost of 2L(v) + 2 while a leaf node where R(v) ≥ s has
a cost of ∞.

Lemma 2.34. The cost of the tree Cs(T) is equal to TT(|T|L , s).

Proof. We prove this by structural induction on the tree. In the base case we have a tree
that is a single leaf. Then Cs(T) = TT(n, s) = 2 as desired. Now consider an arbitrary
tree T. By the inductive hypothesis we can assume that Cs(T.l) = TT.l(|T.l|L , s) and
Cs−1(T.r) = TT.r(|T.r|L , s− 1). Given that the cost of a tree is the sum of the costs
of its nodes, Cs(T) = 2 |T.l|L − 2 + Cs(T.l) + Cs−1(T.r), as all nodes in T.l have their
left depth increased by one, all nodes in T.r has their right depth increased by one,
and the root of T has a cost of −2. By our inductive hypothesis, this implies that

Cs(T) = 2 |T.l|L − 2 + TT.l(|T.l|L , s) + TT.r(|T.r|L , s− 1) = TT(|T|L , s).

If we have a tree with a leaf node where R(v) ≥ s then the tree has a cost of infinity
and TT(n, s) must reach the base case where s ≤ 1 and s < n when evaluating that
node.

Corollary 2.35. Let T(n,s) be the tree with n leaf nodes that minimizes Cs(T(n,s)).
Then T (n, s) = Cs(T(n,s)).

51

It is easier to reason about Cs(T(n,s)) than T (n, s) as we can start with an
arbitrary tree with n leaf nodes and show how it would be possible to mutate that
tree and reduce its cost without computing the full value of the recurrence relation.

Now that we have established the equivalence between the cost of a tree T(n,s)

and T (n, s), we want to prove some things about the structure of this tree. When
s < 2 and s < n we know that T (n, s) = ∞, so whenever possible a tree will never
have a sub-tree with such parameters as nodes. This means that any tree T(n,2) must
have T(1,1) as its right child. By construction, this means that the right-depth of any
node in the tree T(n,s) is at most s − 1. Note that the cost of all the intermediate
nodes is only a function of the total number of nodes in the tree.

What follows is a collection of technical lemmas that give the number of nodes
in T(n,s) with specific left and right depths. Together they let us characterize the
number of leaves in T(n,s) with each cost. This lets us construct a lower bound on the
cost of T(n,s), which in turn is a lower bound on the total number of steps needed to
unghost a line of length n using at most s pebbles.

Lemma 2.36. Let T(n,s) be the tree in Corollary 2.35. Let x be a leaf of T(n,s) with
the largest value for L(x), m = L(x), and x′ be any other leaf where L(x′) < m− 1.
Then R(x′) = s− 1.

Proof. Assume that R(x′) < s− 1. Note that x must be a left child, as it is the node
with the largest left depth. Then we could replace the parent of x with its other child
and replace x′ with an intermediate node whose left child is x and right child is x′.
Doing so must reduce the left depth of x by at least one and does not change the left
depth of any other node in the tree, so the new tree has a lower cost. But this is a
contradiction since T(n,s) is supposed to be the tree with the lowest cost.

The above lemma tells us a surprising amount about the structure of T(n,s).
Since all nodes x where L(x) < m− 1 and R(x) < s− 1 cannot be leaves, these nodes

52

all have left and right children. We can therefore derive exactly how many leaves T(n,s)

must have with each left depth less than m.

Lemma 2.37. Let T(n,s) be the tree in Corollary 2.35 and m be the largest value
of L(v) for v ∈ T(n,s). If m > 1, then we know that the number of leaf nodes T(n,s)

possesses with left depth L < m is
(

L+s−2
s−2

)
.

Proof. By Lemma 2.36 we know that no node with a left depth less than m− 1 and
a right depth less than s− 1 can be a leaf. Thus all such nodes must have left and
right children. We will identify each node with a string of l’s and r’s indicating which
directions are taken from the root of the tree to arrive at that node. Since all nodes
with right depth s or larger have cost infinity, we know that all nodes with right depth
s− 1 must be leaf nodes. Thus, each leaf node with left depth less than m− 1 must be
a right child (otherwise, their sibling would have right depth s) and be identified with
a string ending in an r. There are

(
L+s−2

s−2

)
strings containing L copies of l and s− 1

copies of r that end in an r. This exactly corresponds to the number of leaf nodes
with left depth L < m − 1; each of these leaf nodes must exist in the tree because
none of their ancestors can be leaves by Lemma 2.36, and there can be no other leaves
with this left depth unless there is a leaf with cost ∞.

Since, by Lemma 2.36, all nodes with left depth L = m− 2 and right depth
R < s− 1 must exist in the tree and cannot be leaves, each of these nodes has a left
child. There is a bijection between the number of leaves with left depth L = m− 1
and these children, as their rightmost descendants are exactly the leaf nodes with left
depth m− 1. Since there are

(
m+R−2

R

)
nodes with left depth m− 2 and right depth

R < s− 1, there are

s−2∑
R=0

(
m+R− 2

R

)
=

s−2∑
R=0

(
m+R− 2
m− 2

)
=
(
m+ s− 3
m− 1

)
=
(
L+ s− 2
s− 2

)

leaf nodes with left depth m− 1.

53

Lemma 2.38. Let T(n,s) be the tree in Corollary 2.35 and m be the largest left depth
of any node in T(n,s) and m′ be the largest left-depth of any node in T(n′,s). If m′ > m

then n′ > n.

Proof. Assume that n′ ≤ n. By Lemma 2.37 for all L < m, T(n,s) and T(n′,s) must have
the same number of leaf nodes with left depth L. This means that T(n,s) must have at
least n− n′ more leaves with left depth m than T(n′,s) has with left depth at least m.
We construct a new tree T∗

(n′,s) by taking T(n,s) and removing n− n′ leaves with left
depth m by replacing their parent with its right child. The tree T∗

(n′,s) represents a
valid binary tree and its cost is less than that of T(n′,s) since the two trees have the
same total number of nodes, the same number of leaves with any left depth less than
m, and T∗

(n′,s) has no leaves with left depth larger than m. This implies that T(n′,s)

was not constructed according to Corollary 2.35, giving us a contradiction.

Lemma 2.39. Let T(n,s) be the tree in Corollary 2.35 and n be the smallest value
such that T(n,s) contains a node with left depth m+ 1. Then T(n−1,s) contains exactly(

m+s−2
s−2

)
leaves with left depth m and n = 1 +

(
m+s−1

s−1

)
.

Proof. Assume for the sake of contradiction that T(n,s) contained at least two nodes
with left depth m + 1. By our choice of n we know that T(n−1,s) contains no nodes
with left depth m + 1. By Lemma 2.37 we know that T(n,s) and T(n−1,s) have the
same number of leaves with each left depth less than m. This means the difference in
cost between T(n,s) and T(n−1,s) must be at least m.2 But there is another tree T∗

(n,s)

that costs only m− 1 more than T(n−1,s) constructed by replacing the leftmost leaf
of T(n−1,s) with an intermediate node whose children are both leaves. Since T∗

(n,s) has
cost less than T(n,s), we get a contradiction.

2T(n,s) must have two leaves with left depth m + 1 while T(n−1,s) has one fewer node that must
have left depth m. Since T(n,s) has one more intermediate node, its cost is at least m more than
T(n−1,s).

54

Now T(n,s) must contain exactly one node with left depth m+1. By Lemma 2.37
this means that it contains exactly

(
L+s−2

s−2

)
leaves with left depth L, so the total

number of leaves in T(n,s) is:

n = 1 +
m∑

L=0

(
L+ s− 2
s− 2

)

= 1 +
(
m+ s− 1
s− 1

)

This means that T(n−1,s) must have
(

m+s−1
s−1

)
leaves. All of these leaves have left depth

at most m by Lemma 2.38. So Lemma 2.37 gives us that T(n−1,s) has:(
m+ s− 1
s− 1

)
−
(

m−1∑
L=0

(
L+ s− 2
s− 2

))

=
(
m+ s− 1
s− 1

)
−
(
m+ s− 2
s− 1

)

=
(
m+ s− 2
s− 2

)

leaves with left depth m.

Lemma 2.40. Let T(n,s) be the tree in Corollary 2.35 and
(

m+s−1
s−1

)
≤ n. Then the

cost of T(n,s) is Ω(mn).

Proof. By Lemma 2.37, Lemma 2.38, and Lemma 2.39, we know that for all L ∈
{0, 1, 2, . . . ,m} the number of leaf nodes with left depth L is

(
L+s−2

s−2

)
. Thus, the cost

of these leaf nodes is at least:
m∑

L=0
(2L+ 2)

(
L+ s− 2
s− 2

)
.

Expanding the above summation yields:
2(m+ 1)(m(s− 1) + s)

s(s− 1)

(
m+ s− 1
s− 2

)
.

Using that
(

n
k−1

)
= k

n−k+1

(
n
k

)
and s ≥ 2, this is at least:

2(m(s− 1) + s)
s

(
m+ s− 1
s− 1

)
= 2

(
m(s− 1)

s
+ 1

)(
m+ s− 1
s− 1

)

55

≥ (m+ 2)
(
m+ s− 1
s− 1

)
.

By Lemma 2.37 and Lemma 2.39, if n =
(

m+s−1
s−1

)
+ k then the remaining k leaves

must all have left depth larger than m. Thus, the total cost of the leaves is at least:

(m+ 2)
(
m+ s− 1
s− 1

)
+ 2(m+ 1)k ≥ (m+ 2)n.

There are n− 1 intermediate nodes with cost −2 so the total cost of the tree must be
at least:

(m+ 2)n− 2(n− 1) = mn− 2.

Which is Ω(mn) as desired.

By applying Lemma 2.40 to lower bound the cost of trees and Lemma 2.34 to
apply this lower bound to Equation (2.1), we obtain the following corollary:

Corollary 2.41. The number of steps needed to unghost a line of length n ≥
(

m+s−1
s−1

)
with s pebbles is Ω(mn).

By applying Theorem 2.9 to Corollary 2.41, we get Theorem 2.30.

2.6 Spooky pebbling beyond the line graph

In Section 2.4 and Section 2.5 we discussed how the spooky pebble game
can be applied on a line graph, which simulates unstructured irreversible sequential
computation on a quantum computer. While this gives us very general results,
additional structure on the classical computation can lead to more efficient simulation.
Here we consider computation that can be expressed using a dependency graph —
such as Boolean circuits, straight line (or oblivious) programs, and data-independent
memory hard functions (e.g. (Paul and Tarjan, 1978; Pippenger, 1978; Lengauer and
Tarjan, 1979; Tompa, 1980; Alwen and Serbinenko, 2015; Ren and Devadas, 2016;
Alwen et al., 2017a)). When considering a pebbling of a DAG, each pebble represents
only a single word rather than an entire copy of the computation’s state.

56

2.6.1 Hardness of approximation

Despite having a tight characterization of optimal pebbling strategies on the
line graph, finding optimal pebbling strategies is generally intractable. In fact, we will
show that even approximating the number of pebbles needed in the spooky pebble
game is PSPACE-hard.

There is a strong connection between the number of pebbles needed in the
irreversible and spooky pebble games. A similar observation was independently made
in (Quist and Laarman, 2023, 2024).

Lemma 2.42. If a DAG G with n nodes and one target can be pebbled in the irreversible
pebble game using τ steps and s pebbles, then it can be spooky pebbled using O(nτ)
steps and at most s+ 1 pebbles.

Proof. Let P be an irreversible pebbling of G that uses s pebbles. We will construct
the following spooky pebbling Pspook that uses at most s + 1 pebbles. Pspook first
simulates P, which since we are operating in the spooky pebble game, may leave some
ghosts behind. Additionally, the first time that Pspook places a pebble at any node
vi, we push vi onto an initially empty stack. Once Pspook has placed a pebble at the
target node vt, it removes all other pebbles (leaving many ghosts) and repeats the
following procedure until the stack is empty: We pop the top element off of our stack
and call it vg. If vg does not contain a ghost, we continue to the next element in the
stack. Once we find a vg that contains a ghost, we have Pspook simulate P until vg

is pebbled again, leaving ghosts on some nodes. Pspook then removes the pebble at
vg (without creating a ghost) and then removes all pebbles other than vt, possibly
addling ghosts. By our choice of vg, future iterations of this procedure cannot result
in a ghost on a prior vg, so this procedure terminates in less than n iterations with
pebbles only on vt and no ghosts. Since Pspook is replaying steps from P with at most
one additional pebble on vt, it will use at most s+ 1 pebbles.

57

Since any spooky pebbling is also an irreversible pebbling, the above lemma
is sufficient to give us a nearly tight two-sided bound on the minimum number of
pebbles needed in the spooky pebble game.

Corollary 2.43. Let G be a DAG that requires s pebbles in the irreversible pebble
game. The fewest pebbles needed for the spooky pebble game on G is either s or s+ 1.

In (Demaine and Liu, 2017a) the authors already showed that even approximat-
ing the number of pebbles in the irreversible pebble game is PSPACE-hard. Demaine
and Liu proved that determining the fewest pebbles needed in the irreversible pebble
game is PSPACE-hard to approximate.

Proposition 2.44 (Theorem 13 in (Demaine and Liu, 2017a)). The minimum number
of pebbles needed in the irreversible pebble game on DAGs with n nodes, a single target,
and maximum in-degree 2 is PSPACE-hard to approximate to within an additive n1/3−ε

for any ε > 0.

By combining Proposition 2.44 with Corollary 2.43, we see that finding even
approximate minimum pebble spooky pebbling algorithms for arbitrary DAGs solves a
PSPACE-hard problem. Thus unless P = PSPACE, there can be no polynomial time
algorithm that generates minimum pebble spooky pebbling strategies on arbitrary
DAGs. Quist and Laarman independently4 showed the PSPACE-completeness of this
problem in (Quist and Laarman, 2024) through a different reduction; however, going
through Proposition 2.44 extends this result to a restricted subset of DAGs (those with
maximum in-degree two with a single sink node) and shows that even approximating
the minimum number of pebbles to an additive factor of n1/3−ε + 1 is PSPACE-hard.

3Although Theorem 1 as stated in (Demaine and Liu, 2017a) does not refer to the number of
targets, the full construction presented in section 2.3.2 of (Demaine and Liu, 2017b) is a DAG with a
single target node.

4We had written down a proof of this result 2022; however, we did not release the result publicly
until shortly after (Quist and Laarman, 2024) was posted to arXiv.

58

Theorem 2.45. The minimum number of pebbles needed in the spooky pebble game
on DAGs with n nodes, a single sink, and maximum in-degree 2 is PSPACE-hard to
approximate to within an additive n1/3−ε + 1 for any ε > 0.

2.6.2 Efficient pebbling of the tree

Even though approximating the number of required pebbles is hard in general,
we can still hope to find efficient pebbling algorithms for specific DAGs. The binary
tree with directed edges from the leaves to the root is a natural topology for algorithms
like divide and conquer, where a problem is solved by combining the results of two
smaller sub-problems. Concrete algorithms with this structure include floating point
pairwise summation and computing Merkle trees (McCracken and Dorn, 1964; Merkle,
1988).

It is known that h+ 1 pebbles and Θ(n) steps are both necessary and sufficient
to pebble a binary tree of height h with n = 2h − 1 nodes in the irreversible pebble
game (Cook, 1973). In (Král’ovič, 2001), Král’ovič showed that (h+Θ(log∗ h)) pebbles
are necessary and sufficient this task in the reversible pebble game, where log∗ is
the iterated logarithm function. Despite this there are no known polynomial time
pebbling strategies for the binary tree using the optimal number of pebbles; the best
known tradeoff is a strategy that uses (1 + ε)h pebbles and runs in nO(log 1/ε) steps
(Komarath et al., 2015). We show the existence of a spooky pebbling strategy for the
binary tree that uses the same number of pebbles as the most efficient irreversible
pebbling while only being an O(log n) factor slower. Thus on binary trees, the spooky
pebble game is almost as efficient as the irreversible pebble game and provably more
efficient than the reversible pebble game.

Theorem 2.46. There exists a spooky pebbling algorithm on the complete binary tree
with n = 2h − 1 nodes that uses h+ 1 pebbles and O(n log n) steps.

Proof. Before getting to the algorithm, we present the following subroutine:

59

fast_pebble(T, h): //T is the root and h is the height
if(h = 1):

place(T)
else:

run fast_pebble (T.l, h− 1)
run fast_pebble (T.r, h− 1)
place(T)
remove(T.l)
remove(T.r)

The above subroutine uses at most h+ 1 pebbles and 2h+1 − 1 steps to place a pebble
at the root of the tree while leaving ghosts at all other internal nodes. We will now
use fast pebble to construct a recursive unpebbling algorithm for a complete binary
tree with root T and depth h:
Up(T, h) :

remove(T)
run fast_pebble (T.l, h− 1)
run fast_pebble (T.r, h− 1)
place(T)
remove(T)
remove(T.r)
run U(T.l, h− 1)
run U(T.r, h− 1)

We note that Up(T, h) uses at most h+ 1 pebbles; we do not need to remove T.l before
step 8 as the pebble on this node is removed at the beginning of the recursive call.
The number of steps this algorithm takes follows the recurrence relation:

T (h) ≤ 2T (h− 1) + 2h+2 + 2

Unrolling the recurrence gives us that T (h) is O(h2h), which in turn is O(n log n). We
then note that Up can be converted into a pebbling algorithm P by removing step 6.
Doing this does not change the number of pebbles used and reduces the total number
of steps by one, so P also uses at most h+ 1 pebbles and only O(n log n) steps.

60

Chapter 3: Quantum time-space tradeoffs for
matrix problems

3.1 Introduction

Matrix computations are among the most fundamental computational problems
and are critically important in areas such as numerical and scientific computing,
optimization, and machine learning. If quantum computers can be shown to have a
significant advantage over classical computations for these types of problems then it
would open up a wide range of applications for such devices.

Prior work has shown that non-standard versions of matrix problems may
indeed admit exponential or large polynomial quantum advantage: For any efficiently
implementable operator M , the HHL algorithm of Harrow, Hassidim, and Lloyd (Har-
row et al., 2009) (with the improvements of (Childs et al., 2017)) can efficiently
ε-approximate the value of x†Mx for the solution x of a well-conditioned linear system.
However, it is important to note that this algorithm requires the input to be presented
in an unconventional format.

Many extensions of the HHL algorithm have also been proposed that can be
elegantly described in the quantum singular value transform (qSVT) framework first
described in (Low and Chuang, 2019) and popularized by (Gilyén et al., 2019). Despite
initial hope of exponential speed-up, a series of papers by Tang and co-authors, and
others (e.g. (Tang, 2019; Chia et al., 2020a,b; Gilyén et al., 2022; Bakshi and Tang,
2024; Chepurko et al., 2022)) has shown that, by providing classical algorithms a
comparable input format to the HHL algorithm, these quantum algorithms can be
replaced by classical ones with only a polynomial blowup in the running time, although
this polynomial is not always small.

This body of work still begs the question: What is the conventional quantum
complexity of standard classical problems like explicitly computing linear-system

61

solutions, multiplying or inverting matrices, computing matrix-vector products, and
computing the low rank approximation of a matrix?

By the polynomial method, we know that computing a single inner product
(or parity) of n-bit vectors requires Ω(n) quantum queries (Beals et al., 2001), but
linear algebra computations generally involve Ω(n) or Ω(n2) such computations.
Sherstov (Sherstov, 2012), generalizing results of Klauck, Špalek, and de Wolf (Klauck
et al., 2007) for the OR function, gave a strong direct product lower bound for quantum
query complexity proved using the polynomial method, which yields strong lower
bounds for inner products involving many disjoint input vectors. However, the matrix
problems in linear algebra are very far from direct product problems: The vectors
involved are highly correlated with each other, so this prior work does not shed light
on the key question of whether quantum algorithms provide any advantage for general
linear algebra.

In this chapter, we resolve these questions for quantum computation of a wide
array of linear algebra problems, proving lower bounds for quantum computation that
are asymptotically the same as the best classical lower bounds. Since many of the
problems also have deterministic algorithms whose resource usage matches the lower
bounds, our results show that there is provably no asymptotic quantum advantage at
all in solving these linear algebra problems!

As with the study of classical computation involving super-linear time lower
bounds, we consider quantum algorithms in which we limit the number of qubits of
memory and hence produce quantum time-space tradeoffs. That is, for each fixed
bound on the amount of memory allowed, we derive asymptotically the same time
lower bound for the quantum algorithm as one would get for the time lower bound on
classical algorithms with the same number of classical bits. In many ways, quantum
memory is an even more critical resource than classical memory since it is a measure
of the maximum number of qubits that maintain coherence at any time during the
algorithm’s execution. For this reason the first general-purpose fault-tolerant quantum

62

computers will likely have very limited memory and only be able to execute low depth
quantum circuits. As such, it is crucial to consider both the time and space complexity
for quantum algorithms.

We prove our lower bounds for quantum computation in a query model where
algorithms are able to perform arbitrary input-independent unitary transformations on
their state between quantum queries to their input. This is a sufficiently general model
that our lower bounds also apply to any reasonable model of quantum computation—
including quantum circuits where the (classical) input is stored in quantum-readable
read only memory (QROM).

The keys to proving our time-space tradeoffs are new results proving much
stronger lower bounds than strong direct product theorems for matrix-vector products
and matrix multiplication. While our bounds have the same form as strong direct
product theorems (the success probability decays exponentially with the number of
outputs), they also apply with almost completely overlapping sets of inputs, in contrast
to the disjoint inputs that are necessary to apply direct product theorems.

While there is a large body of work proving strong classical time-space trade-
offs (e.g. (Tompa, 1978; Borodin et al., 1979; Yesha, 1984; Borodin and Cook, 1982;
Abrahamson, 1990, 1991; Mansour et al., 1993)) and a large body of work analyzing
unrestricted quantum query algorithms versus their classical randomized counter-
parts (e.g. (Deutsch and Jozsa, 1992; Bernstein and Vazirani, 1997; Simon, 1997; Beals
et al., 2001; Ambainis, 2002; Spalek and Szegedy, 2006; Spalek, 2008; Sherstov, 2012)),
there are just a few previous papers that analyze the quantum memory required to
make use of these quantum queries. Klauck, Špalek, and de Wolf (Klauck et al., 2007)
extended the classical method of Borodin and Cook (Borodin and Cook, 1982) for
proving time-space tradeoffs to quantum circuits using a new strong direct product
theorem for quantum query algorithms computing the OR function. They showed that
algorithms making T quantum queries and using S qubits of quantum memory require
T = Θ(n1.5/S1/2) to sort lists of length n, and require T = Ω(n2.5/S1/2) to compute

63

n × n Boolean matrix product. Ambainis, Špalek, and de Wolf (Ambainis et al.,
2009) extended this direct product approach to 2-sided error algorithms computing
k-threshold functions which allowed them to produce similar trade-off lower bounds for
systems of linear inequalities/equalities (though these have the drawback, unlike the
other results, that the hard function for space S depends on the space bound). This
approach, based on an extension of the adversary method using eigenspace analysis,
was very difficult to apply.

As a result, further study of quantum time-space tradeoff lower bounds lan-
guished until it was enabled by an idea of Zhandry (Zhandry, 2019) who, motivated
by understanding quantum algorithms interacting with random function oracles, de-
veloped an approach to understanding quantum query algorithms using a compressed
oracle and Fourier analysis. This views computations in a recording query basis
that allow one to keep track of a quantum query algorithm as a superposition of
basis states that have a natural classical query interpretation. It has been applied
to finding multi-way collisions (Liu and Zhandry, 2019) and to inverting a random
permutation (Rosmanis, 2022). This greatly simplifies the analysis of quantum query
algorithms and can be applied to many lower bound methods that use randomly
chosen inputs rather than being limited to cryptographic applications.

Extending Zhandry’s approach, Hamoudi and Magniez (Hamoudi and Magniez,
2021) applied an even cleaner expression of the method, using phase oracles with
the recording query basis rather than Fourier analysis, and extended it using biased
random inputs to derive query lower bounds in a regime of exponentially small success
probability. They used this to obtain time-space tradeoff lower bounds, proving that
any quantum algorithm that finds K disjoint collisions in an input of length n with T
quantum queries and S qubits of memory must have T = Ω(KN1/3/S1/3). They also
re-derived the earlier sorting lower bound using this method.

Our linear algebra lower bounds and methods Time-space trade-off lower
bounds for linear algebraic problems were among the first to be studied for classical

64

computation (Yesha, 1984) after the first bounds for sorting. The strongest classi-
cal results are due to Abrahamson (Abrahamson, 1991) who developed a powerful
general method based on matrix rigidity. This yields state-of-the-art lower bounds
for computation of Fourier transforms, convolution, matrix-vector products, matrix
multiplication, matrix inversion, matrix powering, and linear system solving. The lack
of any analogous results for quantum computation has been a substantial gap in our
understanding 1.

Our results show that all the linear algebraic time-space tradeoff lower bounds
shown by Abrahamson (Abrahamson, 1991) also apply to quantum computation even
when the quantum circuit can adaptively decide when to produce output based on
the observed input. Since many of these classical lower bounds are tight, our results
directly imply that there is no hybrid classical-quantum algorithms with a polynomial
advantage for these problems unlike the query bounds for search and collision finding
in (Hamoudi et al., 2024). We include a table of our time-space tradeoff lower bounds
in Table 3.1.

As discussed already, we need a much stronger lower bound method than any
derivable from strong direct product theorems. We do this by the adding new ideas
to the compressed oracle/recording query approach of Zhandry (Zhandry, 2019) as
extended and applied by Magniez and Hamoudi (Hamoudi and Magniez, 2021). Thus
far, the compressed oracle method has used a two-step pattern: First, identify a
notion of unusual progress of a quantum algorithm towards a solution (i.e., the partial
information so far is more determinative of the answer than one might expect) and
show that the total amplitude of states where this occurs is small, Second, show that
the total amplitude of the quantum states where many outputs are produced without
unusual progress can be bounded; this latter part has used ideas with classical analogs

1Over a field of > n elements one can reduce n× n Boolean matrix multiplication to ordinary
multiplication of 0-1 matrices but the lower bound is inherently too weak because in the Boolean
case each output bit is a disjointness function of its inputs and hence can be computed using only
O(
√

n) quantum queries using Grover’s algorithm ((Grover, 1996)).

65

Problem Lower Bound Source

Matrix Multiplication f(A, B) = AB T = Θ(n3
√

log d /S) Theorem 3.36

Matrix Squaring f(A) = A2 T = Θ(n3
√

log d /S) Corollary 3.40

Matrix Triple Product f(A, B, C) = ABC T = Θ(n4 log d /S) Corollary 3.32

Matrix Cubing f(A) = A3 T = Θ(n4 log d /S) Corollary 3.33

Matrix Inversion f(A) = A−1 T = Ω(n4 log d /S) Corollary 3.34

System of Linear Eqns f(A, y) = A−1y T = Ω(n3 log d /S) Corollary 3.35

Matrix-Vector Product f(x) = Ax T = Θ(n2 log d /S) Theorem 3.21

Discrete Fourier Transform f(x) = Wx T = Θ(n2 log d /S) Corollary 3.26

Convolution f(u, v) = u ∗ v T = Θ(n2 log d /S) Corollary 3.28

Binary Integer Multiplication T = Ω(n2/(S log2 n)) Corollary 3.29

Bool. Matrix Mult. f(A, B) = A •B T = Ω(n2.5/S0.5) (Klauck et al., 2007)

T = Ω(n2.5/S0.25) Theorem 3.45
Classical T = Ω(n3/S) (Abrahamson, 1990)

Classical T = Ω(n3.5/S) for S ≥ cn (Abrahamson, 1990)

Classical T = Θ(n3/S0.5) Theorem 3.54

Boolean Matrix Squaring f(A) = A • A T = Ω(n2.5/S0.25) Corollary 3.55

Table 3.1: Summary of our quantum lower bounds, along with prior work. Inputs are
assumed to be of length n vectors or n× n matrices. Our linear algebra bounds apply
for input elements coming from any fixed subset D of a field with d = |D|. These
are the first quantum time-space lower bounds for all of these problems other than
Boolean matrix multiplication. Problems with deterministic classical query algorithms
given in (JáJá and Simon, 1982) and (Abrahamson, 1991) that match our quantum
query lower bounds are denoted with Θ notation instead of Ω. Constructions of the
matching query algorithms can be found in Section 3.7.

66

that can be applied by breaking the algorithm’s final state into mutually orthogonal
components, each with small amplitude on the correct answers.

However, in our case with linear algebra problems, there is no form of unusual
progress and also no clear way to break up the problem into mutually orthogonal
basis states. Thus, neither part of the pattern seems to work. Instead, we can use
the recording query framework to characterize how much a quantum circuit can
know about its input. We use the triangle inequality to bucket amplitude from the
algorithm’s state into a small number of non-orthogonal components (or buckets) that
share some set of inputs that they know nothing about. We can then apply a classical
argument showing that each component must have small amplitude on the correct
answers. By finding a way to divide the state into a small number of buckets that
each have small amplitude on correct answers, we can obtain tight lower bounds. The
properties required of this division become more subtle as we move to the problem
of matrix multiplication, where in order to get small amplitude, we need to contend
with a partition featuring significantly more parts.

Improved bounds for Boolean matrix operations Here we improve the previous
lower bound for quantum algorithms computing Boolean matrix multiplication given
in (Klauck et al., 2007) from T = Ω(n2.5/S1/2) to T = Ω(n2.5/S1/4). We do this using
a more sophisticated embedding of the k-fold direct product of OR functions into
an arbitrary subset of k outputs of Boolean matrix multiplication. The embedding
hinges on the number of colors needed for a certain kind of partial coloring of subsets
E of the n× n grid. The exponents of n and S in our lower bound are optimal for
the general quantum circuit model to which it applies.

Our lower bounds also lead to improving the classical lower bound tradeoff of
T = Ω(n3/S) for circuits shown in (Klauck et al., 2007) to T = Ω(n3/S1/2). (In these
bounds, T is circuit depth and S is circuit width.) Just as with our quantum lower
bound, this has optimal exponents for n and S, achieving the goal of Klauck, Špalek,

67

and de Wolf (Klauck et al., 2007) who suggested that T 2S = Ω(n6) was a likely tight
tradeoff for classical computation of Boolean matrix multiplication. It is strictly larger
almost everywhere than a classical lower bound of T = Ω(n3/S) for S ≤ n0.5 and
T = Ω(n3.5/S) for S ≥ n for Boolean matrix multiplication on branching programs
(a more general model than circuits) due to Abrahamson (Abrahamson, 1990) that
is tight almost surely for input matrices whose entries are 1 with probability 1/

√
n

independently.

Finally, we make a small adjustment to convert the Boolean matrix-vector
lower bounds and lower bounds for systems of inequalities given in (Klauck et al.,
2007) and (Ambainis et al., 2009), respectively, so that the problems that are shown
hard for space S do not depend on S.

3.2 Preliminaries

We define the binary entropy function H2 : [0, 1]→ R, by H2(p) = −p log2 p−

(1− p) log2(1− p).

Proposition 3.1 (Shannon). The number of subsets of [k] of size at most αk is at
most 2H2(α) k.

Definition 3.2. An m× n matrix is (g, h, c)-rigid iff every k × w submatrix where
k ≤ g and w ≥ n− h has rank at least ck. We call (g, h, 1)-rigid matrices (g, h)-rigid.

Matrix rigidity is a robust notion of rank and is an important property for
proving time-space lower bounds for linear algebra. Fortunately, Yesha gives an explicit
example of such a matrix and Abrahamson proved that there are many rigid square
matrices.

Proposition 3.3 (Lemma 3.2 in (Yesha, 1984)). The n×n Discrete Fourier Transform
(DFT) matrix is (n/4, n/4, 1/2) rigid.

68

Proposition 3.4. [Lemma 4.3 in (Abrahamson, 1991)] There is a constant γ ∈ (0, 1
2)

such that at least a 1− d−1(2/3)γn fraction of the matrices over Dn×n with |D| = d

are (γn, γn)-rigid.

3.2.1 Time space tradeoffs for multi-output functions

Unitary quantum circuits with oracle states Throughout this dissertation, we
consider quantum circuits that seek to compute target functions f : Dn → Rm (or
functions f : Dn → P(R) where the requirement is to output at least m elements of
f(x) if they exist). Let d = |D| and assume the existence of some canonical bijective
map ν : D → { 0, . . . , d− 1 } that gives us an ordering on the elements of D. A
T -query quantum circuit C is specified using input independent unitaries U0, . . . , UT .
These unitaries define a sequence of quantum states |ψ1⟩C , . . . |ψT ⟩C that an algorithm
enters during its execution. When it is ambiguous, we use the subscript C to denote
the partial trace of |ψt⟩ that keeps only the qubits involved in the state of the query
algorithm. Note that even though |ψt⟩ is always a pure state, |ψt⟩C is often a mixed
state. We can think of each of these states |ψt⟩C as a linear combination of basis
vectors |i, p, w⟩ where i represents an index to query, p represents a phase for the
query, and w contains all the remaining qubits of the state.

Similar to (Ambainis, 2002; Zhandry, 2019; Hamoudi and Magniez, 2021), we
define a general oracle operator O that interacts with an input register that starts in a
state |ψ0⟩O. When it is ambiguous, we use the subscript O to denote the partial trace of
|ψt⟩ that keeps only the qubits involved in the state of the oracle containing the input.
Given a distribution D over Dn, we can make |ψ0⟩O = ∑

X∈Dn

√
PrX′∼D[X ′ = X] |X⟩

to represent an input sampled from D. We define our oracle operator O as

O |i, p, w⟩ |X⟩ = ωxip
d |i, p, w⟩ |X⟩ .

Thus the joint state of the input and quantum circuit at the end of the computation
is given by |ψT ⟩ = UTO . . .OU0 |ψ0⟩ where |ψ0⟩ = |0⟩C ⊗ |ψ0⟩O.

69

The output of the quantum circuit is determined by measuring the work register
of |ψT ⟩C in the standard basis and applying some input-independent post-processing
function q to interpret the result as an output τ ∈ RJ where J ⊆ [m]. The correctness
of these output values is then determined by measuring the input registers in the
standard basis to obtain the input X and evaluating whether τ is consistent with
f(X), which we denote by writing τ∥f(X). In general we can define the projector Πk

where:
Πk =

∑
i,p,w,x1,...,xn

s.t. q(w)∥f(x1,...,xn)
and |q(w)|≥k

|i, p, w, x1, . . . , xn⟩ ⟨i, p, w, x1, . . . , xn| (3.1)

The probability that the circuit produces a correct partial assignment of at least
k output values is given by ∥Πk |ψT ⟩∥2. For a given partial assignment q(w) to
some outputs, we can define Πq(w) to be the projection onto the values of |X⟩ where
q(w)∥f(X). More specifically we have that:

Πq(w) =
∑

x1,...,xn

s.t. q(w)∥f(x1,...,xn
)

|x1, . . . , xn⟩ ⟨x1, . . . , xn| (3.2)

By construction when q always produces a partial assignment of at least k elements
we have that Πk = ∑

i,p,w |i, p, w⟩ ⟨i, p, w| ⊗ Πq(w).

Space-bounded quantum computation As described above, we think of space-
bounded quantum circuits as starting in the all |0⟩ state and cycling between applying
input queries O, and arbitrary input-independent computation Ut. Unlike in the unitary
circuit model, we allow our space-bounded quantum circuits to make intermediate
measurements after applying each Ut as shown in Figure 3.1. Adopting the notation
of (Beame and Kornerup, 2025), we will consider the set of consecutive O, Ut and
measurement gates as layer Lt. As was done in (Hamoudi and Magniez, 2021), we will
assume that the quantum query circuit has a dedicated register containing a Boolean
flag and a potential output (i, yi) ∈ [m] × R. After each query O and subsequent
unitary operation Ut, the flag register is measured in the standard basis. Should the

70

Figure 3.1: A general quantum circuit with T queries.

outcome 1 be obtained, the output register is measured in the standard basis and
interpreted as an output pair (i, yi) which is written to a write-only tape. Otherwise,
the circuit produces no output during this layer. The space of layer Lt is the number
of qubits that are passed from layer Lt to Lt+1 and is denoted St. We define the space
of a circuit as the maximum space of any layer, the time as the total number of layers.
Thus the space needed to store the input and output is not included in this model.

Intermediate measurements enable circuits to produce parts of their output
early and discard unnecessary ancillary qubits. Similar to the disjoint collisions bound
in (Hamoudi and Magniez, 2021), our results in Sections 3.4 and 3.5 apply to quantum
circuits without any required structure on their output order. Thus, as long as the
circuits produce the correct output value for each index i, they may do so during
arbitrary layers of the circuit that may depend on the chosen input. However, as was
the case in (Klauck et al., 2007), our results for quantum Boolean matrix multiplication
in Section 3.6 apply to a more restricted model of computation where the choice of
when to produce each output value is independent of the input. In this output-oblivious
model, quantum circuits do not have a flag register. Instead, on predefined layers the
quantum circuit measures the output register in the standard basis and interprets the
result as an element of R corresponding to a fixed output index. This output-oblivious
ordering restricts the set of allowed algorithms and is necessary to prove our key
lemmas associated with Boolean matrix multiplication.

Space-bounded classical computation One can view our classical lower bounds
in Section 3.6 as applying to layered branching programs (Borodin and Cook, 1982)
where the space bound corresponds to the logarithm of the width of the program

71

and the time corresponds to the number of layers. Output in a branching program is
produced along the edges and written to a write-only output tape. Thus the space
bound of a classical computation only considers the S bits of internal state maintained
by the device and not the size of its read-only input or write-only output. Our results
for classical Boolean matrix multiplication in Section 3.6 apply to an output-oblivious
model, which corresponds to branching programs that must produce outputs for the
same output index regardless of which edge is taken between two layers.

The Borodin-Cook method The Borodin-Cook method provides a general frame-
work for proving time-space tradeoff lower bounds for multi-output problems, those
for which every input vector in Dn is associated with some fixed set of possible output
values from set R and the objective is to output at least m of these output values. As
discussed earlier these can be functions f : Dn → Rm, or f : Dn → P(R) where the
requirement is to produce at least m elements of f(Dn), if they exist2.

The property of the function f that enables the Borodin-Cook method to be
used is the following3 for some well-behaved function h(k, n):

(*) Let c = c(D) > 1. Any classical query algorithm that makes at most t ≤ h =
h(k, n) queries for an input distribution D on Dn, correctly produces k correct
output values of f with probability at most c−k.

With this property, Borodin and Cook showed that one directly obtains a classical
time-space tradeoff for computing f of the form T · S = Ω(mh(S/(log c), n) log c) for
time T that is nO(1) and space S as follows:

Proof sketch. Choose k with log n ≤ k ≤ m such that 2S · T · c−k < 1; then k is
roughly S/(log c).

2There is a more general version where the query algorithm is only required to produce these m
outputs with some sufficiently high probability but we focus on the simpler form

3We do not specify an upper limit on the possible k ≤ m in this informal statement. The exact
range for which it holds will impact the space bounds for which the tradeoff holds.

72

Divide the T query steps into disjoint blocks of h = h(k, n) queries each and
assume that T is a multiple of h, without loss of generality. Since m outputs must
be produced on all inputs in Dn and there are T/h blocks, for T < mh/k, which is
Θ(mh log c /S), for every execution on every input there must some block where at
least k correct outputs are produced.

However, since the space is at most S there are at most 2S configurations of
the states that the algorithm could have been in at the beginning of each time block.
Since (*) says that any fixed block can produce at least k output values correctly
with probability at most c−k under D, by a union bound the total probability that
some fixed block produces at least k correct output values is at most 2Sc−k < 1/T by
our choice of k. Since there are only T/h blocks, the probability that there is one of
them that produces k correct answers is < 1.

Therefore T must be Ω(mh log c /S) as required.

For quantum algorithms, Klauck et al. (Klauck et al., 2007) observed that one
could use a result by Aaronson in place of the union bound over the 2S classical state
configurations at the start of each block in the Borodin-Cook method.

Proposition 3.5 ((Aaronson, 2005)). Let C be a quantum circuit, ρ be an S-qubit
(possibly mixed) state, and πmix be the S-qubit maximally mixed state. If C starting in
initial state ρ produces some output z with probability p, then C starting in state πmix

will produce z with probability q which is at least p/2S.

We include a stand-alone derivation here for completeness.

Proof. Without loss of generality we can assume C performs no measurements until the
end of the circuit. Thus we can think of C as representing a unitary operator U . Let
Πz be the projection onto output states of C that cause the circuit to output the value
z. Then pz = Tr[ΠzUρU

†]. By the spectral decomposition theorem we can represent ρ
as a convex combination of some set of orthogonal pure states ρ = ∑

i∈[2S] λi |φi⟩ ⟨φi|.

73

Since the maximally mixed state can be represented as πmix = ∑
i∈[2S](1/2S) |φi⟩ ⟨φi|

we have that:

q = Tr[ΠzUπmixU
†]

= Tr[ΠzU

 ∑
i∈[2S]

1
2S
|φi⟩ ⟨φi|

U †]

= 1
2S

Tr[
∑
i∈2S

⟨φi|U †ΠzU |φi⟩]

≥ 1
2S

Tr[
∑
i∈2S

λi ⟨φi|U †ΠzU |φi⟩]

= 1
2S

Tr[ΠzU

 ∑
i∈[2S]

λi |φi⟩ ⟨φi|

U †]

= 1
2S

Tr[ΠzUρU
†] = p/2S

Where the inequality comes from the fact that ⟨φ|U †ΠzU |φ⟩ ≥ 0 for any state |φ⟩.

With this they showed that essentially the same paradigm could be used to
give similar time-space tradeoff lower bounds for quantum algorithms if one can prove
a quantum analog of (*). One subtlety that arises from the quantum version of
the Borodin-Cook method is that often the quantum version of (*) is proven in a
non-space-bounded unitary circuit model without intermediate measurements. By
using the deferred measurement principle, we can see that lower bounds on the success
probability of short quantum circuits in this model imply equally tight lower bounds
in the space-bounded model where we directly apply the Borodin-Cook method.

3.2.2 The quantum recording query technique

Here we review the methods developed in (Zhandry, 2019; Hamoudi and
Magniez, 2021) that allow us to analyze what a quantum circuit learns about its
input by making quantum queries. We will assume that the input state |ψ0⟩O is the
equal superposition state over all inputs, although (Zhandry, 2019; Hamoudi and
Magniez, 2021; Rosmanis, 2022) generalize this method to other input distributions.

74

We can exchange the general query operator O for the uniform input distribution with
a recording query operator R that we define as follows:

Definition 3.6 (adapted from (Hamoudi and Magniez, 2021)). Let D be the input
alphabet, d = |D|, and ν be our choice of canonical bijection between D and {0, . . . , d−
1}. We define S1 to be the unitary operator that maps

S1 :


|⊥⟩ −→ 1√

d

∑
y∈D |y⟩

1√
d

∑
y∈D |y⟩ −→ |⊥⟩

1√
d

∑
y∈D ω

p ν(y)
d |y⟩ −→ 1√

d

∑
y∈D ω

p ν(y)
d |y⟩ ∀p ∈ {1, . . . , d− 1}.

Let S = (I)i,p,w ⊗ (S⊗n
1)x1,...,xn and O be the standard oracle operator that maps the

basis state
|i, p, w, x1, . . . , xn⟩ −→ ω

p ν(xi)
d |i, p, w, x1, . . . , xn⟩ .

Then the recording query oracle operator R is defined as SOS.

S1 introduces ⊥ as a new value for the input registers. Intuitively, the ⊥ symbol
indicates that the algorithm does not know anything about that register of the oracle.
Hence by adding and correctly manipulating the ⊥ symbols in the oracle’s registers,
we can record what the algorithm knows about the input. Since S2 = I, we can exactly
characterize how the states of quantum circuits with oracles O and R relate to one
another.

Proposition 3.7 (Theorem 3.3 in (Hamoudi and Magniez, 2021)). Let C be a quantum
circuit that for each j ≤ t applies unitary Uj after the j-th query. Let S be the unitary
operation and R be the recording query oracle from Definition 3.6. Let

|ψt⟩ = UtOUt−1 . . . U1OU0

|0⟩i,p,w ⊗
1
dn/2

∑
x1,...,xn∈D

|x1, . . . , xn⟩x1,...,xn


|ϕt⟩ = UtRUt−1 . . . U1RU0

(
|0⟩i,p,w ⊗ |⊥⟩x1,...,xn

)
be the states of C with oracle O or R respectively. Then |ψt⟩ = S |ϕt⟩.

75

In other words, it is impossible to distinguish the final state |ψT ⟩ of a circuit
with standard oracle O from the output with recording oracle R if we apply S to the
registers of R after the final query. Thus we can conclude that the success probability
of a quantum circuit with T queries producing a partial assignment of k correct output
values is given by ∥Πk |ψT ⟩∥2 = ∥ΠkS |ϕT ⟩∥2. Note that while |ϕT ⟩ may have inputs
in the ⊥ state, Proposition 3.7 tells us that S |ϕT ⟩ will never have an input in the ⊥
state. This means that when considering recording query oracles, it is safe to keep
our current definitions of Πk and Πq(w) which will always project out any basis state
where an input is assigned to ⊥. We will leverage the following property of |ϕT ⟩ to
bound the success probability of quantum circuits with at most T queries.

Definition 3.8. Let Γt be the set of all elements (D ∪ {⊥})n with at most t non-⊥
elements. This is the set of indices for all recording query basis states associated with
quantum algorithms that make at most t queries.

Proposition 3.9 (Fact 3.2 in (Hamoudi and Magniez, 2021)). The state |ϕt⟩ from
Proposition 3.7 is a linear combination of basis states |i, p, w, x1, . . . , xn⟩ where vari-
ables (x1, . . . , xn) ∈ Γt.

For the bounds in (Hamoudi and Magniez, 2021) it is essential to bound how
the state of |ϕ⟩O can change after each query. For our use of the recording query
technique, this detailed analysis is not necessary. Nevertheless, we state the following
proposition here for completeness.

Proposition 3.10 (Lemma 4.1 in (Hamoudi and Magniez, 2021)). Let D be the input
alphabet, d = |D|, and ν be our choice of canonical bijection between D and {0, . . . , d−
1}. If the recording query operator R is applied to a basis state |i, p, w, x1, . . . , xn⟩
where p ̸= 0 then the register |xi⟩ is mapped to
∑

y∈D
ω

p ν(y)
d√

d
|y⟩ if xi = ⊥

(1− 2
d
)ωp ν(xi)

d |xi⟩+ 1
d
|xi⟩+ ω

p ν(xi)
d√

d
|⊥⟩+∑

y∈D\{xi}
1−ω

p ν(y)
d

−ω
p ν(xi)
d

d
|y⟩ otherwise.

(3.3)
If p = 0 then the register remains unchanged.

76

3.3 Our bucketing methods

The Borodin-Cook method with recording queries Paraphrasing (*) from our
earlier description of the Borodin-Cook method, to derive a time-space tradeoff lower
bound for a function f : Dn → Rm or f : Dn → P(R), we need to prove that any
quantum query algorithm making at most some h(k, n) queries can correctly produce
at least k of the m output values only with a probability that decays exponentially
in k (over the random choice of the input and the quantum measurements). In the
recording query method, both the input and the state of the quantum algorithm
are encoded in quantum states where measuring the local state of the algorithm
determines the produced outputs (both indices and values) and measuring the local
state of the input determines the classical input to the problem instance. Which k

output positions are produced may depend on the input, so the paradigm proceeds
by fixing both the quantum query algorithm and the k output values produced, and
arguing that those k output values are correct for a fraction of the amplitude of the
input state that is exponentially small in k.

Before discussing our bucketing method to do this, we first give some more
detail about the method of Hamoudi and Magniez (Hamoudi and Magniez, 2021), as
expressed in their lower bound for the m-disjoint collision problem:

The method of Hamoudi and Magniez operates in two parts: They show that

• for any quantum query algorithm (making at most εk
√
n queries), only an

exponentially small fraction in k of the total amplitude of the input is on recording
query basis states with at least k/2 disjoint collisions explicitly represented in
the state (and hence for which at least k/2 outputs would automatically be
correct), and

• for any fixed partial assignment of k output values (disjoint collisions), the
fraction of the total amplitude on recording query basis states that do not

77

explicitly represent at least k/2 of those output values as collisions on which all
k output values are correct is exponentially small in k.

The first part has most of the quantum flavor of the argument since the growth in the
number of disjoint collisions observed is much faster in the quantum case than in the
corresponding classical case. Because the k-disjoint collisions problem involves explicit
local properties of the input, the second part involves many orthogonal components
and hence is a rather straightforward adaptation of a classical argument, with a
Cauchy-Schwartz calculation replacing a union bound.

In all the matrix problems we consider, correctness of the output values depends
on the input values in highly non-local ways that do not yield the kind of orthogonality
properties that Hamoudi and Magniez are able to exploit. There also is no analog of
the kind of progress argument from the first part available. We have to work simply
from a bound on the total number of queries that the algorithm makes. To handle
this we introduce a bucketing approach.

3.3.1 Bucketing

Throughout this section we assume a fixed function f defined on Dn with m

output values; all of our definitions are implicitly defined relative to this fixed function.
The bucketing processes we define apply to the state of a quantum query algorithm
after it has made t queries to a recording query oracle. By Proposition 3.9, such a
state is a linear combination of basis states |i, p, w, x⟩ with x ∈ Γt. Then for any
partial assignment q of k output values that the query algorithm could have produced,
we wish to prove that the fraction of the total amplitude on which the recording query
input leads to an output that agrees with q is exponentially small in k.

Definition 3.11. Let q be a partial assignment of k output values and Πq be the
projector defined in Equation (3.2) for this partial assignment. For c > 1, we define
a c-admissible bucket B for q to be a subset of (D ∪ {⊥})n with the property that,

78

for any quantum state over the inputs that is spanned by the elements of B (i.e.
|ϕ⟩ = ∑

x∈B αx |x⟩) such that:

∥ΠqS |ϕ⟩∥2 ≤ c−k

In our definitions of admissible buckets, the exponentially small bound will
follow from the fact that for some fixed set of a k′ ≥ c′k of the k output values, any
state spanned by the elements of B will have a squared amplitude for those k′ outputs
of q being correct of exactly d−k′ ; i.e., that of a completely random guess. In this case,
c = dc′ .

Definition 3.12. Let A be a subset of (D ∪ {⊥})n. Then ΠA = ∑
x∈A |x⟩ ⟨x|.

In Section 3.2.1 we defined projectors Πk where k ∈ N and Πq(w) where
q(w) ∈ RJ for J ⊆ [m] as ways to project onto basis states associated with the
quantum circuit producing k correct output values or associated with an assignment
q(w) being correct for the value in the input register. Here, we use projectors ΠA to
keep track of the contributions associated with various sets of recording query basis
states in the analysis of our bucketing methods.

Definition 3.13. A c-admissible bucket t-family of size ℓ for a partial assignment q
of k output values is a collection B of subsets of (D ∪ {⊥})n such that

• |B| ≤ ℓ,

• each B ∈ B is a c-admissible bucket for q, and

• every element of Γt is in at least one c-admissible bucket B ∈ B.

The simple version of bucketing recording queries that we use to prove our
lower bound for matrix-vector products works by showing that for t ≤ h(k, n) and
each partial assignment of k output values q, there is a c-admissible bucket t-family
B whose size is not too large. The amplitudes of the recording query basis states

79

indexed by Γt can be partitioned arbitrarily by assigning each element of Γt to some
c-admissible bucket in the family that contains it. We obtain that the total squared
amplitude associated with successfully producing output q is at most |B|2/ck for c > 1.
For matrix-vector product with suitable fixed matrices, we are able to show in this
case that |B|2 is at most bk for some b < c and hence obtain an upper bound on the
overall success probability that is exponentially small in k.

In the case of matrix multiplication, the admissible bucket t-families we can
produce are much too large. The basic approach above does not tailor the choice of
buckets to the specific final state of the recording query input. We will instead need
to produce an association of basis states with buckets that depends on the final state
of the recording query input.

Definition 3.14. The total amplitude of a state |ϕt⟩ on recording query basis states
in a set A ⊆ (D ∪ {⊥})n is ∥ΠA |ϕt⟩∥.

Definition 3.15. A weighted c-admissible bucket t-scheme of total weight w for a
partial assignment q of k output values is a mapping that takes any quantum state
|ϕt⟩ defined over recording query basis state indexed by Γt to a c-admissible bucket
t-family B and an assignment of weights wB ∈ [0, 1] to sets B ∈ B such that

• for every B ∈ B we have ∥ΠB |ϕt⟩∥ ≤ wB and

• ∑
B∈BwB ≤ w.

When we want to emphasize the dependence of B on |ϕt⟩ we write it as B|ϕt⟩.

A c-admissible bucket t-family B′ of size ℓ can always be interpreted as a
weighted c-admissible bucket t-scheme of total weight ℓ by always setting B|ϕt⟩ = B′

and weight wB = 1 for each B ∈ B′.

Lemma 3.16. Let q be a partial assignment of k output values and Πq be the projector
defined in Equation (3.2) for this partial assignment. If there is a weighted c-admissible

80

bucket t-scheme of total weight w for q then there is a constant c > 0 such that for
any quantum state |ϕt⟩ defined over recording query basis states indexed by Γt:

∥ΠqS |ϕt⟩∥2 ≤ w2 · c−k

Proof. Let |ϕt⟩ = ∑
x∈Γt

αx |x⟩ be a quantum state defined over recording query basis
elements indexed by Γt. Let B|ϕt⟩ with associated weights wB for B ∈ B|ϕt⟩ be given by
the weighted c-admissible bucket t-scheme for state |ϕt⟩. For B ∈ B|ϕt⟩, by definition,
we have

ΠB |ϕt⟩ =
∑
x∈B

αx |x⟩

and
∥
∑
x∈B

αx |x⟩∥ = ∥ΠB |ϕt⟩∥ ≤ wB.

Then, since every x ∈ Γt is contained in some B ∈ B|ϕt⟩, we have

∥ΠqS |ϕt⟩∥2 ≤ ∥ΠqS
∑

B∈B|ϕt⟩

ΠB |ϕt⟩∥2

= ∥ΠqS
∑

B∈B|ϕt⟩

∑
x∈B

αx |x⟩∥2

≤

 ∑
B∈B|ϕt⟩

∥ΠqS
∑
x∈B

αx |x⟩∥

2

=
 ∑

B∈B|ϕt⟩

wB∥ΠqS
∑
x∈B

αx

wB

|x⟩∥

2

.

By definition, ∑x∈B
αx

wB
|x⟩ is a vector whose 2-norm is at most 1 and the fact that B

is a c-admissible bucket for q, implies that ∑
B∈B|ϕt⟩

wB∥ΠqS
∑
x∈B

αx

wB

|x⟩∥

2

≤

 ∑
B∈B|ϕt⟩

wB · c−k/2

2

= w2 · c−k

which yields our claimed bound on ∥ΠqS |ϕt⟩∥2.

Note that setting each wB to 1 regardless of the quantum state gives us that
∥ΠqS |ϕt⟩∥ ≤ |B|2c−k, which is the simpler bound we use for the matrix-vector product

81

case. Though weighted schemes are much more flexible than such simple families and
can yield bounds where those may not, choosing good weights presents an additional
challenge. The follow concept will allow us to define these weights implicitly and is
what we use when we analyze matrix product algorithms.

Definition 3.17. A c-admissible bucket t-reduction scheme of size ℓ for a partial
assignment q of k output values is a mapping that takes any quantum state that involves
a combination of recording query basis elements indexed by Γt, |ϕt⟩ = ∑

z∈Γt
δZ |z⟩,

and outputs a collection of buckets B and a subset Γ′
t ⊆ Γt such that

• |B| ≤ ℓ,

• each B ∈ B is a c-admissible bucket for q,

• every element of Γ′
t is in at least one c-admissible bucket in B, and

• the total amplitude of |ϕt⟩ on recording query basis states in Γt \ Γ′
t is at most

1/2. In other words, ∥ΠΓt\Γ′
t
|ϕt⟩∥ ≤ 1/2.

Lemma 3.18. The existence of a c-admissible bucket t-reduction scheme of size ℓ
implies the existence of a weighted c-admissible bucket t-scheme of total weight 2ℓ.

Proof. Fix q as the partial assignment to k output values and |ϕt⟩ as any input state
over recording query basis states indexed by Γt. We apply the reduction scheme with
the full state to begin with. This yields a collection of c-admissible buckets B of size ℓ
and a set Γ′

t. Without loss of generality we can assume that Γ′
t = ∪B∈BB, as otherwise

we could always define another c-admissible bucket t-reduction scheme of size ℓ with
this choice of Γ′

t to use instead. We assign weight 1 to all those buckets.

The remaining total amplitude of states in Γt is at most 1/2. We apply the
reduction scheme inductively to the state |ϕ′

t⟩ = ΠΓt\Γ′
t
|ϕt⟩ /∥ΠΓt\Γ′

t
|ϕt⟩∥ which is a

renormalized state for the portion of |ϕt⟩ defined on Γt \Γ′
t. This yields a new set of at

most ℓ buckets, each of which we assign weight 1/2. Each iteration of this procedure

82

results in a renormalized state whose support is a smaller subset of Γt. We repeat
in this way until we have exhausted all of Γt and produced a weighted c-admissible
bucket t-scheme. The total weight of this scheme is at most ∑ i≥0 ℓ/2i ≤ 2ℓ.

Corollary 3.19. Let q be a partial assignment of k output values and Πq be the
projector defined in Equation (3.2) for this partial assignment. The existence of a
c-admissible bucket t-reduction scheme of size ℓ for q implies that for any quantum
state |ϕt⟩ = ∑

x∈Γtαx|x⟩ there is a constant c > 0 such that:

∥ΠqS |ϕt⟩∥2 ≤ 4ℓ2 · c−k

3.3.2 When do good bucket reduction schemes exist?

Our definition of c-admissible t-reduction schemes requires that they are defined
for all possible states |ϕt⟩ defined over Γt. In this section we show that a much simpler
combinatorial property is sufficient to yield such schemes. As noted earlier, none of
the lower bounds for specific functions that we prove use the methods of this section.

To motivate this property, for any G ⊆ Γt, we can consider a state |ϕG
t ⟩ =∑

x∈G
1√
|G|
|x⟩, the uniform superposition over G. A c-admissible t-reduction scheme

for q of size ℓ must yield a set B = BG of c-admissible buckets for q of size ℓ such that
∥Π⋃

B∈BG
B |ϕG

t ⟩∥ ≥ 1/2. In particular, since |ϕG
t ⟩ is a uniform superposition, ⋃B∈BG

B

must contain at least a 1/
√

2 fraction of the elements of G. In other words, we must
have the following (c, ℓ, t) admissible bucket covering property for q:

• For every subset G of elements of Γt, there is a set of at most ℓ c-admissible
buckets for q that contain at least a 1/

√
2 fraction of the elements of G.

We will see that merely having such a property is sufficient to yield a reduction scheme
that is not much larger and works for any state |ϕt⟩ defined over Γt.

Lemma 3.20. Let f be a function defined on Dn. Let c > 1 and q be a partial
assignment of k output values of f . If the (c, ℓ, t) admissible bucket covering prop-

83

erty holds for q then there is a c-admissible bucket t-reduction scheme for q of size
O(tℓ log(ne|D|/t)).

Proof. Let |ϕt⟩ = ∑
x∈Γt

αx |x⟩ be a quantum state. For λ = 21/12, partition Γt into
subsets Γ1

t ,Γ2
t , . . . such that Γi

t contains the x ∈ Γt such that |αx| ∈ (λ−i, λ−(i−1)].

Let κ = 24 + ⌈6t log2(ne|D|/t)⌉ and let E = ⋃
i>κ Γi

t be the portion of |ϕt⟩ not
associated with the first κ sets of elements of Γt. The norm of the projection of |ϕt⟩
on E (in other words ∥ΠE |ϕt⟩∥) is at most

√
|E| · λ−κ ≤

√
|Γt| · λ−κ =

(
t∑

j=0

(
n

j

)
|D|j

)1/2

2−κ/12 ≤
(ne|D|

t

)t/2
2−κ/12 ≤ 1/4 (3.4)

by our definition of κ. The reduction we construct will definitely leave this “error”
portion of |ϕt⟩ uncovered.

Associated with each Γi
t for i ∈ [κ], we apply the c, ℓ, t) admissible bucket

property for q twice. The first yields at set of ℓ c-admissible buckets for q that together
contain at least 1/

√
2 fraction of the elements of Γi

t; we then apply the property
to the ≤ 1 − 1/

√
2 fraction of elements of Γi

t that were not covered by the first
application. Together we obtain a family Bi, of size at most 2ℓ that contains a subset
Gi consisting of at least a 1√

2 + 1√
2(1− 1√

2) =
√

2− 1/2 fraction of the elements of Γi
t.

The set of c-admissible buckets for q associated with |ϕt⟩ in the t-reduction scheme is
B = ⋃

i∈[κ] Bi. The size of this family is at most 2κℓ which is O(tℓ log(ne|D|/t)) as
claimed.

It remains to prove that at most amplitude 1/2 is left after removing the
portion of |ϕt⟩ covered by B. For each Bi, which contains the elements of Gi for i ≤ κ,
we have the following:

∑
x∈Gi

|αx|2 ≥ (
√

2− 1/2) · |Γi
t|λ−2i

= λ−2(
√

2− 1/2) · |Γi
t|λ−2(1−i)

≥ λ−2(
√

2− 1/2) ·
∑

x∈Γi
t

|αx|2

84

= (21/3 − 2−7/6) ·
∑

x∈Γi
t

|αx|2.

Now let Γ′
t = ⋃

B∈BB. Since |ϕt⟩ is a normalized vector supported by basis state in Γt:

∥ΠΓ′
t
|ϕt⟩∥2 =

∑
i∈[κ]
x∈Gi

|αx|2

≥ (21/3 − 2−7/6)
∑
i∈[κ]
x∈Γi

t

|αx|2

= (21/3 − 2−7/6)(1− ∥ΠE |ϕt⟩∥2)

≥ (21/3 − 2−7/6)15/16

> 3/4

This directly implies that ∥ΠΓt\Γ′
t
|ϕt⟩∥ < 1/2 as required.

3.4 Quantum matrix vector products

In this section, we consider the task of — for a fixed matrix A ∈ Fm×n —
computing the function fA(x) = Ax for inputs x ∈ Dm (where D is a fixed subset of
F) using a quantum circuit. We note that this is a fundamentally harder task than is
considered in many quantum machine learning papers (for example (Harrow et al.,
2009)) as we require the circuit to output a classical vector y ∈ Fn rather than either
a quantum state encoding the entries of y in the amplitudes or an estimate of y†My.
Also unlike many prior quantum time-space tradeoffs, including sorting (Klauck et al.,
2007; Hamoudi and Magniez, 2021; Beame and Kornerup, 2023) and Boolean matrix
multiplication (Klauck et al., 2007) (and our Theorem 3.45), our matrix vector product
and matrix multiplication lower bounds apply to circuits that can adaptively decide
when to produce each output based on the observed inputs. Time-space lower bounds
against such quantum circuits were first described in (Hamoudi and Magniez, 2021)
for the multiple disjoint collisions problem, although they were not able to show such
a result for sorting. Similar to (Hamoudi and Magniez, 2021) we are able to lower

85

bound these circuits by identifying a single hard distribution over the inputs that
applies to any set of outputs.

Theorem 3.21. Let m ≤ nr for some constant r and 2 ≤ d ≤ nn. There is a constant
C > 0 such that the following holds: Let A be an m× n matrix over a field F that is
(g, h, c)-rigid. Then any quantum circuit using time T and space S < c

6(r+6)g log2 d that
computes the function fA : Dn → Fm for D ⊆ F with d = |D| given by fA(x) = Ax

with success probability larger than 2−S requires that T ≥ Cmh log d /S.

When the fixed matrix A is sufficiently rigid, for example when both g and h are
linear in n as is the case with the DFT matrix per Proposition 3.3 or a random matrix
with high probability per Proposition 3.4, this lower bound becomes Ω(mn log d)
provided that S is at most some constant times n log d which is essentially a trivial
constraint for the problem. This bound is tightly matched by a classical query
algorithm in Proposition 3.62.

This theorem follows from the following key lemma, proven in Section 3.4.1,
which lets us bound the number of correct output values produced by a shallow
quantum circuit.

Lemma 3.22. Let A be any (k, h, c)-rigid m × n matrix over a finite field F and
let fA : Dn → Fm for D ⊆ F be defined by fA(x) = Ax. Then for α > 0 and for
input x sampled uniformly from Dn and any quantum circuit C with at most αh
queries to x, the probability that C produces k correct output values of fA(x) is at most
⌈h/(ck)⌉2 (4H2(α)/|D|1−α)ck.

Note: For α ≤ 0.0737 we have 1− α− 2H2(α) > 1/6 and hence the bound is
at most ⌈h/(ck)⌉2|D|−ck/6 for d ≥ 2.

Proof of Theorem 3.21 from Lemma 3.22. Let C be a quantum circuit with T queries
and space S that computes fA(x) with success probability larger than 2−S. Since h ≤ n,
m ≤ nr and S ≥ log2 n we only need to consider the case that T ≤ nr+1 logn d ≤ nr+2.

86

Let α = 0.0737. We partition C into ⌈T/(αh)⌉ sub-circuits that each have
at most αh queries. By combining Proposition 3.5 and Lemma 3.22, we know that
each sub-circuit can produce k ≤ g correct output values with probability at most
2S ⌈h/(ck)⌉2 d−ck/6 ≤ h2 2Sd−ck/6.

By assumption, we have d−cg/6 ≤ 2−(r+6)S ≤ n−(r+4)2−2S ≤ h−22−2S/T since
S ≥ log2 n, T ≤ nr+2, and h ≤ n. In particular, this implies that h2d−cg/6 < 2−S so
we must have T > αh by Lemma 3.22. Set k ≤ g to be the smallest integer such that
h2 2Sd−ck/6 ≤ 2−S/T . Then the probability that a sub-circuit produces k correct output
values is at most 2−S/T . This gives k = ⌈[6 log2(hT) + 12S]/(c log2 d)⌉. We note that k
is at most c∗S/ log2 d for some constant c∗ > 0 since log2(hT) ≤ (r+3) log2 n ≤ (r+3)S.

Taking a union bound over the sub-circuits, the probability that any of them
produces k correct output values is at most 2−S. Since fA has m outputs, this means
that

⌈T/(αh)⌉ (k − 1) ≥ m

Since T ≥ αh, we have
2Tk ≥ αmh.

Plugging in our upper bound on k we have that

2c∗TS/ log2 d ≥ αmh

and hence T · S is at least α
2c∗mh log d as claimed.

3.4.1 Success probability of small depth quantum circuits

We first give an overview of the argument, which involves an initial uniform
distribution over the inputs x ∈ Dn. This begins by decomposing the state after
t ≤ αh queries into orthogonal components based on the values of working qubits
|i, p, w⟩, which also determine the set of k output values produced. It then suffices to
prove that for each fixed |i, p, w⟩ the total fraction of the squared amplitude for any

87

state that is spanned by recording query basis states with at most t non-⊥ items can
be on inputs for which the fixed output values are correct is exponentially small in k.

If we knew which t ≤ αh input indices were queried, as we would with classical
algorithms in the analysis of (Abrahamson, 1991), then things would be easy: Since
the fixed matrix A is (k, h, c) rigid, the sub-matrix of A with rows corresponding to
these k outputs, and with the ≥ n − αh “unqueried” columns has rank at least ck,
so any fixed output can be correct with probability at most d−ck over the choice of
inputs. However, the quantum state after t queries is a superposition of recording
query basis states that could involve all possible subsets of ≤ t non-⊥ indices which is
at least

(
n
t

)
possibilities.

To handle this we use the basic version of our bucketing method for recording
query basis states and find a relatively small collection of admissible buckets (whose
size will be a sufficiently small exponential in k) that allows us to run the quantum
analogue of the classical argument within each bucket. We now give the proof in
detail.

Proof of Lemma 3.22. Let d = |D|. For simplicity we will assume that q(w)—the
output as a function of the measured value of the work register—always produces k
outputs.4 Let A be a (k, h, c)-rigid matrix. By Proposition 3.9 after t ≤ αh queries in
the recording query oracle model, the state |ϕt⟩ is a linear combination of basis states
|i, p, w, x1, . . . , xn⟩ where (x1, . . . , xn) ∈ Γt. It will be useful to be more explicit in our
discussion of Γt. Each element of Γt consists of an assignment y ∈ DI for some subset
I ⊆ [n] with |I| ≤ t and value ⊥ on all coordinates in [n] \ I. Therefore, we can write
the state as:

|ϕt⟩ =
∑
i,p,w

I⊆[n], |I|≤t

y∈DI

αi,p,w,I,y |i, p, w⟩ |y⟩I |⊥⟩[n]\I (3.5)

4If in general q(w) produces more than k outputs, we only consider its first k outputs.

88

for some αi,p,w,I,y with ∑
i,p,w,I,y |αi,p,w,I,y|2 = 1. Thus by Proposition 3.7, the final

state of the algorithm (after t ≤ αh queries) in the non-recording query oracle setting
is given by:

|ψt⟩ = S |ϕt⟩ = S
∑
i,p,w

I⊆[n], |I|≤t

y∈DI

αi,p,w,I,y |i, p, w⟩ |y⟩I |⊥⟩[n]\I

Since S behaves as the identity on |ϕt⟩C and the |i, p, w⟩ are orthogonal basis states,
we can rewrite this as:

∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[
S⊗n

1
∑

I⊆[n], |I|≤t

y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

]

for some βi,p,w and βi,p,w
I,y such that αi,p,w,I,y = βi,p,w β

i,p,w
I,y , ∑i,p,w |βi,p,w|2 = 1 and for

each choice of i, p, w, we have that ∑I,y |βi,p,w
I,y |2 = 1. With this decomposition, using

the definition in Equation (3.1), the success probability of producing k correct output
values is given by:

∥∥∥ΠkS |ϕt⟩
∥∥∥2

=
∥∥∥∥∥Πk

∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[
S⊗n

1
∑

I⊆[n], |I|≤t

y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

]∥∥∥∥∥
2

=
∥∥∥∥∥∑

i,p,w

βi,p,w |i, p, w⟩ ⊗
[
Πq(w)S

⊗n
1

∑
I⊆[n], |I|≤t

y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

]∥∥∥∥∥
2

where Πq(w) is defined as in Equation (3.2) and is the projection of Πk onto fixed
values of q(w). Since the basis states |i, p, w⟩ are orthogonal and ∑i,p,w |βi,p,w|2 = 1,
we have

∥∥∥ΠkS |ϕt⟩
∥∥∥2
≤ max

i,p,w

∥∥∥∥∥Πq(w)S
⊗n
1

∑
I⊆[n], |I|≤t

y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

(3.6)

We now fix i, p, w and let Aq(w) be the submatrix of A restricted to the rows defined
by the set of the k output values U associated with q(w). We can describe Πq(w) as a

89

projection onto basis states |x1, . . . , xn⟩ such that:

Aq(w)


x1
...
xn

 = q(w).

Since the basis states |y⟩I |⊥⟩[n]\I for distinct I are orthogonal in the recording
query basis, they remain orthogonal in the standard basis after the S operator is
applied. However, the subsequent application of the Πq(w) projector makes these
vectors no longer orthogonal.

To handle this, we bucket the sets I ⊆ [n] with |I| ≤ t into a small number of
buckets, B1, . . ., so that for each bucket Bℓ we can bound:

µℓ =
∥∥∥∥∥Πq(w)S

⊗n
1

∑
I∈Bℓ,y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

and then we can use the triangle inequality to bound the success probability as a sum
of the µℓ.

In particular, our key observation is that if a bucket of recording query basis
states completely misses querying a fixed set of input variables that could completely
scramble the value of a set of r output values, then one cannot do better than randomly
guess those output values. More precisely, we show that the contribution to success
from that bucket of basis states has amplitude at most 1√

dr .

Lemma 3.23. Let U ⊆ [m] be a set of output indices and V ⊆ [n] be a set of input
indices with |V | = |U | = r such that the submatrix AU,V is full rank. Fix q ∈ FU and
define Πq to be the projection map onto the span of the set of basis states |x1, . . . , xn⟩

with x1 . . . xn ∈ D such that AUx = q. Then for any collection B of sets I ⊆ [n] \ V
and any quantum state ∑I∈B, y∈DI ηI,y |y⟩I |⊥⟩[n]\I we have

∥∥∥∥∥ΠqS
⊗n
1

∑
I∈B, y∈DI

ηI,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

≤ 1
dr
.

90

Proof. By definition each I ∈ B satisfies I ∩ V = ∅, so

ΠqS
⊗n
1

∑
I∈B, y∈DI

ηI,y |y⟩I |⊥⟩[n]\I

= ΠqS
⊗n
1 (|⊥⟩V ⊗

∑
I∈B, y∈DI

ηI,y |y⟩I |⊥⟩[n]\(I∪V)

= Πq(S⊗r
1 |⊥⟩V ⊗ S

⊗(n−r)
1

∑
I∈B, y∈DI

ηI,y |y⟩I |⊥⟩[n]\(I∪V))

= Πq(
∑

y′∈DV

1√
dr
|y′⟩V ⊗ S

⊗(n−r)
1

∑
I∈B, y∈DI

ηI,y |y⟩I |⊥⟩[n]\(I∪V))

since S1(|⊥⟩) = ∑
y′∈D

1√
d
|y′⟩. Now

S
⊗(n−r)
1

∑
I∈B, y∈DI

ηI,y |y⟩I |⊥⟩[n]\(I∪V) =
∑

z∈(D∪{⊥})[n]\V

δz |z⟩n\V

for some amplitudes δz satisfying ∑z∈(D∪{⊥})[n]\V |δz|2 = 1.

For each value of z ∈ D[n]\V , since the sub-matrix AU,V is invertible, there is a
unique value yz ∈ DV such that AU(yz ∪ z) = q so we get that∥∥∥∥∥ΠqS

⊗n
1

∑
I∈B, y∈DI

ηI,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

=
∥∥∥∥∥Πq

[∑
y′∈DV

1√
dr
|y′⟩V ⊗

∑
z∈(D∪{⊥})n−r

δz |z⟩[n]\V

]∥∥∥∥∥
2

=
∥∥∥∥∥ 1√

dr
· Πq

[∑
y′∈DV

|y′⟩V
∑

z∈Dn−r

δz |z⟩n\V

]∥∥∥∥∥
2

=
∥∥∥∥∥ 1√

dr
· Πq

∑
z∈D[n]\V

δz

∑
y′∈DV

|y′⟩V |z⟩n\V)
∥∥∥∥∥

2

=
∥∥∥∥∥ 1√

dr

∑
z∈D[n]\V

δz |yz⟩V |z⟩n\V)
∥∥∥∥∥

2

≤ 1
dr

since ∑z∈D[n]\V |δz|2 ≤ 1.

Next we decompose the set of all I with |I| ≤ t into buckets where we can
apply the above with r equal to a constant fraction of k. (This decomposition of the

91

sets I into buckets automatically implies a decomposition of Γt into buckets, each of
which will be a c′-admissible bucket for some constant c′ by Lemma 3.23 and the value
of r, yielding a c′-admissible bucket t-family corresponding to the basic version of our
bucketing methods as discussed in Section 3.3.)

Lemma 3.24. Let A be a (k, h, c)-rigid matrix and let k′ = ⌈ck⌉. Then for every
subset U of k rows of A, there is a collection of disjoint k′-subsets of columns from [n],
V1, . . . , Vℓ for ℓ = ⌈h/k′⌉ ≤ ⌈h/(ck)⌉ and corresponding sets of rows U1, . . . , Uℓ ⊆ U

such that for each j ∈ [ℓ], the k′ × k′ submatrix AUj ,Vj
is full rank. (In particular the

union, W , of the sets Vj has size at least h.) If c = 1 then all Uj = U .

Proof. Fix U ∈ [m] with |U | = k. The following procedure constructs such a collection,
one set at a time. We maintain a subset of W columns that is the union of the Vj

constructed so far. Suppose that |W | < h. Then, by the (k, h, c)-rigidity of A, the
submatrix AU,[n]\W has rank at least k′. Hence there is a k′ × k′ submatrix AUj ,Vj

of
AU,[n]\W that has full rank k′. We now add Vj to the collection of k′-sets of columns,
record its corresponding row set Uj, and set W ← W ∪ Vj. This produces exactly
⌈h/k′⌉ subsets.

Fix the collection of sets V1, . . . , Vℓ given by Lemma 3.24. Let k′′ = ⌊αk′⌋.
Suppose that Vj = {i1, . . . , ik′} ⊆ [n] with i1 ≤ · · · ≤ ik′ . For each λ ∈

(
[k′]
k′′

)
, define

the set V λ
j to be the subset of Vj that has the k′′ elements of Vj indexed by λ removed.

(That is, ij′ /∈ V λ
j iff j′ ∈ λ.) Then |V λ

j | = k′ − k′′ ≥ c(1− α)k. There are a total of(
k′

k′′

)
≤ 2H2(α) k′ possible values of λ and hence ⌈h/k′⌉ · 2H2(α) k′ sets of the form V λ

j .
These sets have two useful properties: first any subset of [n] with size at most αh must
miss some V λ

j and second if the entries of x corresponding to some V λ
j are uniformly

random, then for any set of k indices in Ax, at least c(1− α)k of these values are also
uniformly random.

Lemma 3.25. For t ≤ αh and every I ⊆ [n] with |I| ≤ t, there is some j ≤ ⌈h/k′⌉

and λ ∈
(

[k′]
k′′

)
such that I ⊆ [n] \ V λ

j .

92

Proof. Fix such a set I with |I| ≤ t. Since t ≤ αh, |⋃j∈[ℓ] Vj| ≥ h, and the sets Vj are
disjoint, by averaging there is some set Vj that has at most an α fraction of its elements
in I. Hence Vj has at most k′′ ≤ αk′ elements of I. Choose a set λ ∈

(
[k′]
k′′

)
that

contains the indices within Vj of all of the elements of Vj ∩ I. Then by construction
I ∩ V λ

j = ∅.

(Lemmas 3.23 and 3.25 together give us all the ingredients we need to yield a
c′-admissible bucket t-family with c′ = dc(1−α) as defined in Section 3.3; each element
of the family is determined by a pair (j, λ) as follows:) By applying Lemma 3.25 we
can associate each I ⊆ [n] with |I| ≤ t with a pair (j, λ) such that I ∈ [n] \ V λ

j and
define bucket Bλ

j to consist of all such sets I associated with pair (j, λ).5 Further,
define a set Uλ

j ⊆ Uj ⊆ [m] of the rows of Aq(w) with |Uλ
j | = k′ − k′′ such that the

submatrix AUλ
j ,V λ

j
is full rank. Such a subset of rows must exist since AUj ,V λ

j
is a full

rank matrix. Then let qλ
j = q(w)|Uλ

j
be the portion of the assignment q(w) on the

rows of Uλ
j .

We are now ready to provide an upper bound on the success probability from
Equation (3.6) using our admissible bucket family.∥∥∥∥∥Πq(w)S

⊗n
1

∑
I⊆[n], |I|≤t

y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

=
∥∥∥∥∥Πq(w)S

⊗n
1

∑
j∈[ℓ]

∑
λ∈([k′]

k′′)

∑
I∈Bλ

j , y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

≤
∥∥∥∥∥∑

j∈[ℓ]

∑
λ∈([k′]

k′′)
Πqλ

j
S⊗n

1
∑

I∈Bλ
j , y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

. (3.7)

Applying Lemma 3.23 with r = k′ − k′′, q = qλ
j , U = Uλ

j , V = V λ
j , and B = Bλ

j , we

5Note that while some sets I could be associated with multiple pairs (j, λ) in the admissible
bucket family, since we only require one bucket per recording query basis element for the analysis,
we will choose only one such pair for each I.

93

have that ∥∥∥∥∥Πqλ
j
S⊗n

1
∑

I∈Bλ
j , y∈DI

βi,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥∥
2

≤ 1/dk′−k′′ ≤ 1/d(1−α) k′
.

and hence using Equation (3.7) we obtain that

∥∥∥ΠkS |ϕt⟩
∥∥∥2
≤ ℓ2

(
k′

k′′

)2

/d(1−α) k′ ≤ ⌈h/k′⌉2 4H2(α) k′
/d(1−α) k′ = ⌈h/k′⌉ (4H2(α)/d(1−α))k′

.

Without loss of generality in our desired bound we can assume that 4H2(α)/d(1−α) < 1.
Therefore, the bound still applies when we replace k′ by the potentially smaller ck
which is what we needed to show.

3.4.2 Related time-space tradeoffs

Following the same arguments as for classical computation (Abrahamson, 1991),
we use Theorem 3.21 to obtain a collection of time-space lower bounds for problems
that are closely related to matrix vector products. Our proofs are identical to their
classical counterparts proven in(Abrahamson, 1991, Sections 5-6) and are duplicated
here for completeness. Many of these lower bounds are tightly matched by classical
query algorithms. Constructions of matching upper bounds can be found in Section 3.7.

Corollary 3.26. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit
that computes the discrete Fourier transform (DFT) of vectors in Dn in time T and
space S with probability at least 2−S requires T to be Ω(n2 log(d) /S).

Proof. Applying Theorem 3.21 with the rigidity of the DFT from Proposition 3.3
directly gives us the lower bound.

Proposition 3.27 ((Abrahamson, 1991)). There is a constant γ ∈ (0, 1/2) such that
at least a 1− |D|−1(2/3)γn fraction of the Toeplitz (diagonal constant) matrices over
Dn×n are (γn, γn)-rigid.

94

Recall that the convolution of two vectors w = u∗v is wk = ∑
i∈[n] uivk−i where

the indices are reduced modulo n, where we identify n with 0.

Corollary 3.28. Let F be a field and D ⊆ F such that d = |D|. Any quantum query
algorithm computing the convolution of two vectors in Dn in time T and space S with
probability at least 2−S requires T to be Ω(n2 log(d) /S)

Proof. For simplicity assume that n is even. Let

U =



un un−1 . . . u2 u1
u1 un . . . u3 u2
...

un−2 un−3 . . . un un−1
un−1 un−2 . . . u1 un

 =
[
A B
C D

]

Where A,B,C and D are n/2×n/2 submatrices. Then Uv is the convolution between
vectors u and v. Observe that U is a Toeplitz matrix and by picking u to be a uniform
vector over D, Proposition 3.27 tells us that for sufficiently large n, there is a constant
γ ∈ (0, 1/2) such that both A and B are (γn, γn/2)-rigid with probability at least
1/2. This lets us restrict our input to such choices for u and observe that the matrix
U ′ =

[
A B

]
is (γn, γn/2)-rigid, so Theorem 3.21 gives us that computing U ′v requires

T that is Ω(n2 log(d) /S). Since U ′ is a subfunction of U , convolution also requires T
that is Ω(n2 log(d) /S).

Corollary 3.29. A quantum circuit that multiplies two n bit binary numbers in time
T and space S with probability at least 2−S requires T to be Ω(n2/(S log2 n)).

Proof. Let u, v be arbitrary vectors over F2. Define the binary number

u′ = 0⌈log2 n⌉−1un . . . 0⌈log2 n⌉−1u10⌈log2 n⌉−1un . . . 0⌈log2 n⌉−1u1

and similarly define v′. Then observe that the product u′ · v′ contains all entries of the
convolution between u and v encoded in blocks of ⌈log2 n⌉ bits each. By Corollary 3.28
this requires T to be Ω(n2/(S log2 n)).

95

Proposition 3.30 ((Abrahamson, 1991)). Let A,B,C, Y ∈ Dn×n. Let B (and Y)
be the vectors in Dn2 formed by stacking the transposes of the rows of B (and Y)
into a column vector. If D is a commutative ring, then the following conditions are
equivalent:

Y = ABC

Y = (A⊗ CT)B

Where ⊗ is the standard tensor (Kronecker) product.

Proposition 3.31 ((Abrahamson, 1991)). Let γ ∈ (0, 1/2). If A and B are (γn, γn)-
rigid, then A⊗B is (γ2n2, γ2n2, γ2)-rigid.

Corollary 3.32. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit
that computes the product ABC on inputs A,B,C ∈ Dn×n in time T and space S with
probability at least 2−S requires T that is Ω(n4 log(d) /S).

Proof. We use Proposition 3.30 to view this as a matrix-vector product problem
where B is the input and Y is the output. By Proposition 3.4 there is a constant
γ ∈ (0, 1/2) such that both A and C are γ rigid with constant probability, so we can
assume such without increasing the expected cost by more than a constant factor.
Then Proposition 3.31 gives us that A⊗ C is (γ2n2, γ2n2, γ2)-rigid and we can apply
Theorem 3.21 to get that T must be Ω(n4 log(d) /S) as desired.

Corollary 3.33. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit
that computes A3 on inputs in Dn×n in time T and space S with probability at least
2−S requires T that is Ω(n4 log(d) /S).

Proof. Let A,B,C ∈ Dn×n. Then construct the 4n× 4n matrix:

M =


0 A 0 0
0 0 B 0
0 0 0 C
0 0 0 0


96

Observe that the top right n×n sub-matrix of M3 is equal to the product ABC. Thus
we get a reduction to matrix-matrix-matrix product and can apply Corollary 3.32 to
get our lower bound.

Corollary 3.34. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit
that computes A−1 on unit upper triangular inputs in Dn×n in time T and space S
with probability at least 2−S requires T that is Ω(n4 log(d)/S).

Proof. Let A,B,C ∈ Dn×n. Then construct the 4n× 4n matrix:

M =


I −A 0 0
0 I −B 0
0 0 I −C
0 0 0 I


Where I is the n × n identity submatrix. Then observe that M−1 has the product
ABC as its top right n × n submatrix. We can again use Theorem 3.21 to get our
lower bound.

Corollary 3.35. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit
that solves any n× n system of linear equations over D in time T and space S with
probability at least 2−S requires T that is Ω(n3 log(d) /S)

Proof. It is possible to invert a matrix by solving n systems of n linear equations.
By a reduction Corollary 3.34 gives us that solving these equations requires T

that is Ω(n4 log(d) /S). Thus least one of these equations must require T that
is Ω(n3 log(d) /S) to solve.

3.5 Quantum matrix multiplication

While many of the applications so far, including the matrix triple product lower
bound discussed in the previous section, are derived from the matrix-vector product
lower bound, our matrix multiplication lower bound requires a separate argument
using ideas from the classical lower bound for the problem in (Abrahamson, 1991).

97

Implementing this requires a much more subtle way of applying our bucketing method
for states that allows us to concentrate on just a subset of the buckets containing most
of the total amplitude and ignore the others. As in Section 3.4, our lower bounds in
this section apply to a more general model of quantum circuits that can decide which
outputs they want to produce in a given layer based on the inputs that they have
queried.

Here we consider the matrix multiplication problem f(A,B) = AB where both
A and B are considered input. If we could fix a choice of A, we would be able to make
our proof somewhat simpler. However, as Abrahamson pointed out in (Abrahamson,
1991), there is a classical algorithm that can compute the function f(B) = AB for any
fixed matrix A in O(n2) queries and O(n log d) space. Thus our lower bound requires
both A and B to be inputs to the function.

Theorem 3.36. Let F be a field and D ⊆ F with d = |D|. Then any quantum
circuit C that uses time T and space S and computes the function f : D2n2 → Fn2

given by f(A,B) = AB with success probability larger than 1/T must have T that is
Ω(n3

√
log d /S).

Again this theorem follows from the following key lemma, proven in Section 3.5.1,
which lets us bound the number of correct output values produced by a shallow quantum
circuit.

Lemma 3.37. Let γ ∈ (0, 1/2) and f : Dn2 ×Dn2 → Fn2 for D ⊆ F with |D| = d be
defined by f(A,B) = AB. Then for any constant β > 0 and quantum circuit C with
at most h = βγn

√
k/2 queries to input matrices A,B sampled uniformly from Dn2,

the probability that A and B are (γn, γn)-rigid and C produces k correct output values
of f(A,B) is at most 16 min(k, n)

√
2k(4H2(4β)/d1−4β)k/4

Note that for β ≤ 0.0184 we have 1− 4β − 2H2(4β) > 1/6 so the bound is at
most 16 min(k, n)

√
2kd−k/24.

98

Proof of Theorem 3.36 from Lemma 3.37. Let γ ∈ (0, 1/2) be the constant given by
Proposition 3.4. By that proposition, the probability that either of two matrices A and
B chosen uniformly randomly from Dn2 is not (γn, γn)-rigid is at most 2d−1(2/3)γn.
Let C be a quantum circuit with T queries and space S. Let β = 0.0429, d = |D|, and
set k = ⌈48(6S + 4)/ log2 d⌉ . We partition C into

⌈
T/(βγn

√
k/2)

⌉
sub-circuits that

each have at most βγn
√
k/2 queries. Without loss of generalities there are at most n2

such sub-circuits. By combining Proposition 3.5 with Lemma 3.37, we know that for
a uniformly random input, the probability that A and B are (γn, γn)-rigid matrices
and a fixed sub-circuit can produce k outputs is at most 16 min(k, n)

√
2k2Sd−k/24 ≤

16k
√

2k2Sd−k/24. Therefore the probability that A and B are (γn, γn)-rigid matrices and
one of the sub-circuits produces k correct output values is at most 16k

√
2k2Sd−k/24n2.

Combining this with the probability that one of A or B is not (γn, γn)-rigid, the
probability that there is a sub-circuit that correctly produces k output values is at
most

16k
√

2k2Sd−k/24n2 + 2d−1(2/3)2γn.

Since we can assume without loss of generality that T ≤ n3, for sufficiently large n,
2d−1(2/3)2γn ≤ 1/(2T) and k

√
2k ≤ 2k/48 ≤ dk/48. Plugging in our value of k and the

fact that S ≥ log2 n without loss of generality gives a probability of at most

16k
√

2k22Sd−k/24n2 + 2d−1(2/3)2γn ≤ 162Sd−k/48n2 + 1/(2T)

≤ 1/(2T) + 1/(2T) = 1/T.

Since C must be correct with probability larger than 1/T , this implies that

(k − 1)
⌈
T/(βγn

√
k/2)

⌉
≥ n2.

Plugging in our value of k gives us that

T is Ω(n3
√

log d/
√
S + log T).

Since S ≥ log2 n and our bound trivially holds when T is ω(n3√log d) there is a
constant c > 0 such that cS ≥ log2 T . This implies that T is Ω(n3

√
log d/S) as

desired.

99

Our quantum lower bound is tightly matched by a classical query algorithm in
Proposition 3.66.

3.5.1 The success probability of small depth quantum circuits

We first give an overview of the argument which assumes a uniform distribution
over all input matrices A and B in Dn×n. Unlike the matrix-vector product proof, in
addition to the requirement of k correct output values, for success we also include
the extra condition that both matrices must be (γn, γn) rigid. As in the case of the
matrix-vector product proof, we decompose the state after t ≤ h = βγn

√
k/2 steps

into orthogonal components based on different values |i, p, w⟩ which determines the k
output values produced, though this now can be up to quadratic in n. However, unlike
that proof, we need to use the weighted version of our bucketing method. It again
suffices to show that for each such |i, p, w⟩ the total fraction of the squared amplitude
for any state that is spanned by recording query basis states with at most t non-⊥
items can correspond to inputs where there is success is exponentially small in k.

The output values produced determine a set of rows of the matrix A and
columns of the matrix B that are relevant. For classical algorithms, where we can
determine a set of input locations queried, the lower bound of (Abrahamson, 1991)
shows that either at least k/4 of the output values lie in rows where few elements of
A are queried or k/4 lie in columns where few elements of B are queried. For each
of these cases (“light” rows or “light” columns). The corresponding output values in
those rows or columns are hard to produce in that the requirement that the other
matrix is rigid means that the algorithm is exponentially unlikely in k to be correct
on those entries.

In the quantum case, when viewed in the recording query basis, the state
involves a superposition over all possible assignments to subsets of indices for the
relevant rows of A and columns of B with at most t non-⊥ entries. For convenience,
we first split these basis states depending on whether there are many outputs in light

100

rows or many in light columns; and then on which rows/columns those are; each
determines a set of k/4 output values to consider hard and whether to focus on matrix
A or B. The number of such possibilities is not too large so the total is not too much
larger than the maximum over all such choices. We further consider a fixed choice of
the other rigid matrix that maximizes the resulting probability that the hard outputs
produced have correct values. The number of consistent recording query basis states
in each such superposition is still enormous.

We need to apply bucketing where either A or B is fixed as a rigid matrix and
the other can be interpreted as a having a collection of light columns (or rows) such
that the output values are the results of a matrix-vector products involving vectors
with few queries. However, repeatedly applying the basic bucketing method for basis
states we used for matrix-vector products fails because the total number of buckets
would be too large since it would end up being the product over the number of choices
for each row or column.

Instead, we show that among these potential buckets we can find a small
number of admissible buckets that together capture a large portion of the amplitude
associated with the state, yielding an admissible bucket t-reduction scheme that lets
us derive the final lower bound. We now give the details of this argument.

Proof of Lemma 3.37. Let C = AB, Πrigid(A) (and Πrigid(B)) be the projection onto
inputs where A (and B) are (γn, γn)-rigid matrices, and define Πrigid = Πrigid AΠrigid B.
Assume that q(w) — the output as a function of the measured value of the work
register — produces exactly k outputs; we ignore anything it produces after the first k.
We will use [A] to denote the set of indices of elements in A and likewise for [B] and
[C]. By Proposition 3.9, after t ≤ h queries in the recording query basis, the state |ϕt⟩

is a linear combination of basis states |i, p, w, x1, . . . , xn⟩ where (x1, . . . , xn) ∈ Γt. As
in our analysis of the case of matrix-vector products, it will be necessary to be more
explicit in our discussion of Γt. Each element of Γt consists of an assignment x ∈ DE

and y ∈ DF for some subsets E ⊆ [A] and F ⊆ [B] with |E|+ |F | ≤ t and value ⊥

101

on all coordinates in [A] \ E and [B] \ F . Therefore, our state can be written as:

|ϕt⟩ =
∑
i,p,w

E⊆[A],F ⊆[B]
|E|+|F |≤t

x∈DE ,y∈DF

αi,p,w,E,F,x,y |i, p, w⟩ |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

for some αi,p,w,E,F,x,y with ∑i,p,w,E,F,x,y |αi,p,w,E,F,x,y|2 = 1. We first apply an analogous
series of observations and decompositions to those that allowed us to derive (3.6) from
(3.5) in the case of matrix-vector product. By Proposition 3.7, we note that the final
state of the algorithm in the standard oracle setting is given by:

|ψt⟩ = S |ϕt⟩ = S
∑
i,p,w

E⊆[A],F ⊆[B]
|E|+|F |≤t

x∈DE ,y∈DF

αi,p,w,E,F,x,y |i, p, w⟩ |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

Because S behaves as the identity on |ϕt⟩C and each distinct choice of |i, p, w⟩ gives
an orthogonal basis state, this equals:

∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[
S⊗2n2

1
∑

E⊆[A],F ⊆[B]
|E|+|F |≤t

x∈DE ,y∈DF

βi,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]

for some βi,p,w and βi,p,w
E,F,x,y such that ∑i,p,w |βi,p,w|2 = 1 and ∑

E,F,x,y |βi,p,w
E,F,x,y|2 = 1

for each i, p, w. Now the probability over the choices of the input matrices and the
result of the quantum algorithm making t queries that the matrices A and B are both
(γn, γn)-rigid and the algorithm produces k correct output values from C = AB is at
most:∥∥∥ΠkΠrigidS |ϕt⟩

∥∥∥2

=
∥∥∥∥∥ΠkΠrigid

∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[
S⊗2n2

1
∑

E⊆[A],F ⊆[B]
|E|+|F |≤t

x∈DE ,y∈DF

βi,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]∥∥∥∥∥
2

=
∥∥∥∥∥∑

i,p,w

βi,p,w |i, p, w⟩ ⊗
[
Πq(w)ΠrigidS

⊗2n2

1
∑

E⊆[A],F ⊆[B]
|E|+|F |≤t

x∈DE ,y∈DF

βi,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]∥∥∥∥∥
2

102

=
∑
i,p,w

|βi,p,w|2
∥∥∥∥∥
[
Πq(w)ΠrigidS

⊗2n2

1
∑

E⊆[A],F ⊆[B]
|E|+|F |≤t

x∈DE ,y∈DF

βi,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]∥∥∥∥∥
2

≤ max
i,p,w

∥∥∥∥∥Πq(w)ΠrigidS
⊗2n2

1
∑

E⊆[A],F ⊆[B]
|E|+|F |≤t

x∈DE ,y∈DF

βi,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

. (3.8)

For the rest of the proof we fix an i, p, w to achieve the maximum value in Equation (3.8)
and prove an upper bound on the resulting probability. This fixes the output values
q(w); we write G ⊆ [C] with |G| = k for the set of indices of the outputs given by q(w).
To keep notations simpler in the remainder of the proof we observe that Equation (3.8)
is upper bounded by the maximum of∥∥∥∥∥Πq(G)ΠrigidS

⊗2n2

1
∑

E⊆[A],F ⊆[B]
|E|,|F |≤t

x∈DE ,y∈DF

βE,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

(3.9)

over all βE,F,x,y with ∑
E,F,x,y |βE,F,x,y|2 = 1, all sets G ⊆ [C] with |G| = k and all

assignments q(G) to G.

We will split the sum in Equation (3.9) over the different sets E and F of
queried input indices depending on how they relate to the set of output indices given
by G. Let r(G) be the set of rows containing elements of G and c(G) be the set of
columns containing elements of G.6

Recall our bound h = βγn
√
k/2 on the number of queries. We define a light

row of E to be an element of r(G) that contains at most βγn elements of E and define
a light column of F to be an element of c(G) that contains at most βγn elements of
F . Since |E|+ |F | ≤ t ≤ βγn

√
k/2 we have ≤

√
k/2 rows of E in r(G) and ≤

√
k/2

columns of F in c(G) that are not light. We define L(E) ⊆ r(G), to be the set of
light rows of E and L′(F) ⊆ c(G) to be the set of light columns of F . Therefore

6We will think of r(G) and c(G) as being subsets of indices in [n] that correspond to rows in A
and columns of B, respectively, that are relevant for the outputs in G.

103

|{(i′, j′) ∈ G | i′ /∈ L(E), j′ /∈ L′(F)}| ≤ k/2 so at least k/2 elements of G are in light
rows of E or in light columns of F . Therefore for every pair (E,F) at least one of the
sets of outputs Gr

L(E) = {(i′, j′) ∈ G | i′ ∈ L(E)} or Gc
L′(F) = {(i′, j′) ∈ G | j′ ∈ L′(F)}

has size ≥ k/4.

Let E be the set of all E ⊆ [A] with |E| ≤ t such that G has at least k/4
outputs in light rows and F be the set of all F ⊆ [B] with |F | ≤ t such that G
has at least k/4 outputs in light columns. We separately bound the contribution to
Equation (3.9) from pairs (E,F) with E ∈ E or F ∈ F. The analyses of the two cases
are completely symmetric up to matrix transposition. It will be convenient to focus
on the case F ∈ F representing basis states where there are many outputs of G in
light columns and compute an upper bound on∥∥∥∥∥Πq(G)ΠrigidS

⊗2n2

1
∑

E⊆[A]
|E|≤t

x∈DE

∑
F ∈F

y∈DF

βE,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

. (3.10)

Basis states where E ∈ E give exactly the same upper bound as Equation (3.10) by
applying the argument to the transposed product BTAT and corresponding transposed
sets F T , ET , and GT . Hence, the quantity in Equation (3.9) is at most 4 times that
of Equation (3.10).

To upper bound Equation (3.10), we first remove the projection operator
Πrigid B from Πq(G)Πrigid = Πq(G)Πrigid AΠrigid B to get Πq(G)Πrigid A. We then rewrite
this combined projection operator as Πq(G)Πrigid A = ∑

A (γn,γn)-rigid ΠA ⊗ ΠA
q(G) where

ΠA is the projection onto the specific matrix A and for each A, ΠA
q(G) is the projection

onto the choices for matrix B such that C = AB agrees with q(w). We therefore
obtain that Equation (3.10) is at most∥∥∥∥∥ ∑

A (γn,γn)-rigid
(ΠA ⊗ ΠA

q(G))S⊗2n2

1
∑

E⊆[A]
|E|≤t

x∈DE

∑
F ∈F

y∈DF

βE,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

=
∥∥∥∥∥ ∑

A (γn,γn)-rigid
(ΠA ⊗ ΠA

q(G)S
⊗n2

1)
∑

A′∈(D∪{⊥})[A]

∑
F ∈F

y∈DF

βA′βA′

F,y |A′⟩[A] |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

104

=
∥∥∥∥∥ ∑

A (γn,γn)-rigid
βA |A⟩[A] ⊗ [ΠA

q(G)S
⊗n2

1
∑
F ∈F
|F |≤t

y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F]

∥∥∥∥∥
2

(3.11)

for some βA and βA
F,y such that ∑A∈(D∪{⊥})n2 |βA|2 = 1 and ∑F ∈F,y∈DF 0 |βA

F,y|2 = 1 for
each A. Since ΠA

q(G) only projects onto the [B] input registers, each distinct choice of
|A⟩[A] gives orthogonal states so Equation (3.11) equals

∑
A (γn,γn)-rigid

|βA|2
∥∥∥∥∥ΠA

q(G)S
⊗n2

1
∑
F ∈F
|F |≤t

y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

≤ max
A (γn,γn)-rigid

∥∥∥∥∥ΠA
q(G)S

⊗n2

1
∑
F ∈F

y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

(3.12)

We fix a (γn, γn)-rigid matrix A that maximizes (3.12) and partition the set
F based on the set L′(F) which contains all but at most

⌊√
k/2

⌋
columns in c(G).

Therefore we can rewrite (3.12) as

∥∥∥∥∥ ∑
H⊆c(G)

s.t. |H|≤
⌊√

k/2
⌋ΠA

q(G)S
⊗n2

1
∑
F ∈F

L′(F)=c(G)\H

y∈DF s.t. L′(F)=c(G)\H

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

. (3.13)

Since |c(G)| ≤ min(k, n) we can upper bound (3.13) by

min(k, n)
√

2k · max
H⊆c(G)

s.t. |H|≤
⌊√

k/2
⌋
∥∥∥∥∥ΠA

q(G)S
⊗n2

1
∑
F ∈F

y∈DF

s.t.L′(F)=c(G)\H

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

. (3.14)

We fix the set H achieving the maximum value in Equation (3.14), which fixes
the value of L′(F) = c(G) \ H. This fixes the set Gc

L′(F) of elements in G that are
in light columns of F (equivalently, not in H) which, since F ∈ F, contains at least
k/4 elements of G. Let G′ be a fixed subset of k/4 of the elements of Gc

L′(F). By

105

construction we have c(G′) ⊆ L′(F). By only requiring that the outputs in G′ are
correct, we therefore can upper bound

∥∥∥ΠkΠrigidS |ϕt⟩
∥∥∥2

by the maximum value of

4 min(k, n)
√

2k

∥∥∥∥∥ΠA
q(G′)S

⊗n2

1
∑

F ⊆[B]
c(G′) ⊆ L′(F)

y∈DF

β′
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

(3.15)

over all G′ ⊆ [C] with |G′| = k/4 and β′
F,y with ∑F,y |β′

F,y|2 = 1.

For each j ∈ c(G′), let kj be the number of elements of G′ in column j. Our
overall strategy is to consider the j ∈ c(G′) one by one, and show that the total
amplitude on states where these kj outputs are correct conditioned on the success
for previous values of j is of the form d−δkj for some fixed constant δ > 0. These
are kj outputs of the matrix-vector product Ayj where yj is the j-th column of B
and the fact that c(G′) ⊆ L′(F) implies that F has made at most βγn queries to yj.
This is very similar to the situation with the matrix-vector problem from Lemma 3.22.
In analogy with the Lemma 3.22, we define U j to be the set of kj rows containing
outputs of G′ in column j.

Applying Lemma 3.24 with c = 1, for each j ∈ c(G′) there is a collection
V j

1 , . . . , V
j

ℓj
of ℓj = ⌈γn/kj⌉ kj-subsets of [n] such that the kj × kj sub-matrix AUjV j

i

has full rank.

Using the ideas of Lemma 3.22 we could bucket the possible basis states into
one bucket for each large subset of the set associated with the tuple (V j

ij
)j∈q(G′) using

Lemmas 3.23 and 3.24 and bound each bucket separately. However, unlike its use in
the proof of Lemma 3.22, the value of many of the kj can be very small, as low as 1,
in which case the upper bounds using Lemmas 3.23 and 3.24 would yield a probability
bound larger than 1.

Instead, we need a stronger argument that depends on the amplitudes β′
F,y

in Equation (3.15). The large subsets of the sets associated with tuples (V j
ij

)j∈q(G′)

yield candidate buckets but there are too many of them to be used. However, we

106

will see in the following lemma that a relatively small collection of them can capture
all but a constant fraction of the total amplitude given by the β′

F,y. We will then
see, in Corollary 3.39, how this can be applied inductively with the portion of the
total amplitude that is left over to yield a good upper bound on the total probability
of producing the output values in q(G′), which is what we need to prove. (In the
terminology of Section 3.3, Lemma 3.38 describes an admissible bucket t-reduction
scheme for q(G′), deriving some of its implications in parallel with its construction.
On the other hand, Corollary 3.39 describes how that yields the overall bound; this is
essentially a combination of the ideas of Lemmas 3.16 and 3.18.)

Lemma 3.38. Let G′ ⊆ [C] with |G′| = k/4 and F′ be a set of F ⊆ [B] such that
c(G′) ⊆ L′(F). Suppose further that ∑F ∈F′,y∈DF |δF,y|2 = 1 for some δF,y. Define
α = 4β. Then there is a F′′ ⊆ F′ and coefficients δ′

F,y such that ∑F ∈F′′,y∈DF |δ′
F,y|2 = 1

and
∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥2
≤ 21+H2(α) k/2

d(1−α) k/4 + 1
2
∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′′

y∈DF

δ′
F,y |y⟩F |⊥⟩[B]\F

∥∥∥2
.

(3.16)

Proof. We first recall the definitions in our discussion preceding the lemma statement.
For each j ∈ c(G′), define U j to be the set of row indices of G′ in column j and let
kj = |Uj|. Define ℓj = ⌈γn/kj⌉, apply Lemma 3.24 for each j, and let V j

1 , . . . , V
j

ℓj
be

the collection of disjoint subsets of [n] of size kj found for each j such that each kj×kj

sub-matrix AUjV j
i

has full rank.

For each F ∈ F′ and i ∈ c(G′), define F j to be the set of row indices of elements
of F in column j; since c(G′) ⊆ L′(F), we have |F j| ≤ βγn. For each i ∈ [ℓj] define

mj
i =

∑
F ∈F′, y∈DF

|δF,y|2 · |F j ∩ V j
i |.

Since ∑F,y |δF,y|2 = 1, mj
i can be viewed as the expected size of the overlap between

the recorded queries in the j-th column of the matrix B and each V j
i . Since for each

107

j, the sets V j
i are disjoint and |F j| ≤ βγn we have ∑i∈[ℓj] m

j
i ≤ βγn. Therefore, for

each j, we have some index ij ∈ [ℓj] such that mj
ij
≤ βγn/ℓj ≤ βkj.

Since ∑j∈c(G′) kj = |G′| = k/4, the expected total overlap between the recorded
queries in the columns of G′ and the chosen sets V j

ij
for those columns is ∑j m

j
ij
≤∑

j βkj = βk/4. Define F′′ to be the set of F ∈ F′ such that ∑j |F j∩V j
ij
| ≥ αk/4 = βk.

By Markov’s inequality we have

∑
F ∈F′′, y∈DF

|δF,y|2 ≤
∑

j m
j
ij

βk
≤ 1/4. (3.17)

We split our analysis for F′ into two parts due to sets F in F′′ and F′ \F′′, respectively.

We begin with F ∈ F′′. Write κ = ∑
F ∈F′′, y∈DF |δF,y|2 ≤ 1/4. For F ∈ F′′,

define δ′
F,y = 1√

κ
δF,y. Then ∑F ∈F′′,y∈DF |δ′

F,y|2 = 1 and
∥∥∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

= κ

∥∥∥∥∥ΠA
q(G′)S

⊗n2

1
∑

F ∈F′′

y∈DF

δ′
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

≤ 1
4

∥∥∥∥∥ΠA
q(G′)S

⊗n2

1
∑

F ∈F′′

y∈DF

δ′
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

. (3.18)

We now consider F′ \F′′. By definition, for F ∈ F′ \F′′, we have ∑j |F j ∩V j
ij
| <

αk/4. By definition we have ∑j |V j
ij
| = ∑

j kj = k/4 so F must miss more than
(1−α)k/4 elements of the set V = ⋃

j(V j
ij
×{ j }) of size k/4. For each subset V ′ of V

of size k/4− ⌊αk/4⌋ we define a bucket BV ′ that contains sets F that must miss the
elements of V ′ and assign each F ∈ F′ \ F′′ to a unique bucket in an arbitrary fixed
way. There are at most 2H2(α)k/4 such buckets. Then∥∥∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′\F′′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

≤
(∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

∥∥∥∥∥ΠA
q(G′)S

⊗n2

1
∑

F ∈BV ′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
)2

108

≤ 2H2(α) k/2 ·
∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

∥∥∥∥∥ΠA
q(G′)S

⊗n2

1
∑

F ∈BV ′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥∥∥
2

= 2H2(α) k/2 ·
∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

∥∥∥∥∥ΠA
q(G′)S

⊗n2

1 |⊥⟩V ′

∑
F ∈BV ′
y∈DF

δF,y |y⟩F |⊥⟩[B]\(F ∪V ′)

∥∥∥∥∥
2

(3.19)

where we first used the triangle inequality followed by Jensen’s inequality.

Now, applying the S⊗n2

1 operator in (3.19) will convert the |⊥⟩V ′ to a uniform
superposition of all |y′⟩V ′ for all y′ ∈ DV ′ and convert ∑F ∈BV ′

y∈DF

δF,y |y⟩F |⊥⟩[B]\(F ∪V ′)

to some superposition of |y′′⟩ ∈ D[B]\V ′ with amplitudes some δV ′,y′′ such that∑
y′′ |δV ′,y′′ |2 = ∑

F ∈BV ′ ,y∈DF |δF,y|2. Therefore, we can rewrite (3.19) as

2H2(α) k/2 ·
∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

∥∥∥∥∥ΠA
q(G′)

[∑
y′∈DV ′

1√
d|V ′|

|y′⟩V ′

]
⊗

∑
y′′∈D[n]\V ′

δV ′,y |y⟩[B]\V ′

∥∥∥∥∥
2

. (3.20)

We now consider the application of ΠA
q(G′). Let V ′

j ⊆ V j
ij

be the set of row
indices in column j of V ′ ⊆ [B] and consider the corresponding set of columns in A.
Since AUjV j

ij

has full rank, there is a subset U j
0 ⊆ U j with |U j

0 | = |V ′
j | so that AUj

0 V ′
j

also has full rank. Now define G′
0 ⊆ G′ to be ⋃j∈c(G)(Uj × { j }) which has size |V ′|.

For each j, the outputs in Uj×{ j } ⊂ [C] can be expressed as the matrix-vector
product AUj

0 V ′
j
yj

V ′
j

+M ′ for some |V ′
j | × |V ′

j | matrix M ′ defined by the product of the
U j

0 × ([n] \ V ′
j) submatrix of the fixed matrix A and yj

[n]\V ′
j
. Since AUj

0 V ′
j

is full rank,
for each value of M ′ given by yj

[n]\V ′
j
, there is precisely one value of yj

V ′
j

that will yield
the output values q(Uj × { j }). Therefore, putting the properties for the columns of
c(G′) together, there is precisely one value y′ ∈ DV ′ that will yield the output values
q(G′

0).

(In the terminology of Section 3.3, this says that each of the 2H2(α)k/4 buckets
BV ′ corresponds to a c-admissible bucket for q(G′) with c = d(1−α)/4. Equation (3.17)
means that the squared amplitude of the projection on the set F′′ corresponding
to recording query basis states not associated with these buckets has total squared

109

amplitude at most 1/4 and hence total amplitude at most 1/2. Thus, this construction
produces a c-admissible bucket t-reduction scheme of size ℓ = 2H2(α)k/4.)

It follows that, (3.20) is at most

2H2(α) k/2 ·
∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

∥∥∥∥∥ΠA
q(G′

0)

[∑
y′∈DV ′

1√
d|V ′|

|y′⟩V ′

]
⊗

∑
y′′∈D[n]\V ′

δV ′,y |y⟩[B]\V ′

∥∥∥∥∥
2

= 2H2(α) k/2 ·
∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

∥∥∥∥∥ 1√
d|V ′|

∑
y′′∈D[n]\V ′

δV ′,y |y⟩[B]\V ′

∥∥∥∥∥
2

= 2H2(α) k/2 ·
∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

1
d|V ′|

∑
y′′∈D[n]\V ′

|δV ′,y|2

= 2H2(α) k/2 ·
∑

V ′⊆V
|V ′|=k/4−⌊αk/4⌋

1
d|V ′|

∑
F ∈BV ′ ,y∈DF

|δF,y|2

= 2H2(α) k/2 · 1
d|V ′|

∑
F ∈F′\F′′,y∈DF

|δF,y|2

≤ 2H2(α) k/2/d(1−α) k/4 (3.21)

where the last equality follows since the buckets BV ′ partition F′ \ F′′.

We now combine the contributions from F′′ and F′ \ F′′. Applying Jensen’s
inequality together with the bounds in (3.18) and (3.21) we obtain that
∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥2

≤ 2
[∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′\F′′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥2
+
∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥2
]

≤ 21+H2(α) k/2

d(1−α) k/4 + 1
2
∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′′

y∈DF

δ′
F,y |y⟩F |⊥⟩[B]\F

∥∥∥2

as required.

110

Corollary 3.39. Let G′ ⊆ [C] with |G′| = k/4, F′ be a set of F ⊆ [B] such that
c(G′) ⊆ L′(F), and ∑F ∈F′,y∈DF |δF,y|2 = 1 for some δF,y. Then

∥∥∥ΠA
q(G′)S

⊗n2

1
∑

F ∈F′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥2
≤ 22+H2(4β) k/2/d(1−4β) k/4.

Proof. Let M be the maximum value of
∥∥∥ΠA

q(G′)S
⊗n2

1
∑

F ∈F′, y∈DF

δF,y |y⟩F |⊥⟩[B]\F

∥∥∥2

over all choices of F′ and δF,y with the required properties. This corollary follows
from Lemma 3.38 by observing that the right-hand term in Equation (3.16) multiplied
by 1/2 is also upper bounded by M and hence M ≤ 21+H2(4β) k/2/d(1−4β) k/4 +M/2.

Finally, plugging the bound from Corollary 3.39 into (3.15), we obtain that
the probability that A and B are both (γn, γn)-rigid and C produces k correct output
values for C = AB,

∥∥∥ΠkΠrigidS |ϕt⟩
∥∥∥2

, is at most

16 min(k, n)
√

2k

(
4H2(4β)

d(1−4β)

)k/4

as desired.

3.5.2 Related time-space tradeoffs

Now we use Theorem 3.36 to prove some related quantum linear algebra lower
bounds. Constructions of matching upper bounds can be found in Section 3.7.

Corollary 3.40. Let F be a field and D ⊆ F with d = |D|. If C is a quantum circuit
that computes the function f : Dn2 → Fn2 where f(A) = A2 on all upper triangular
inputs in time T and space S with success probability at least 1/T , then T must be
Ω(n3

√
log d /S).

111

Proof. Let A,B ∈ Dn2 and construct the 3n× 3n matrix:

M =

0 A 0
0 0 B
0 0 0


Since the top right n × n sub-matrix of M2 is equal to the product AB, we get a
reduction from matrix multiplication and can apply Theorem 3.36 to derive the lower
bound.

3.6 Quantum tradeoffs for Boolean matrix operations

In this section we focus on Boolean matrix operations, which use (AND,OR)
inner product of vectors rather than the usual (+,×) inner product. We denote this
Boolean inner product of vectors u and v by u • v and extend this notation to Boolean
matrix-vector product and Boolean matrix multiplication. For u, v ∈ { 0, 1 }n, u•v = 1
if and only if the subsets of [n] encoded by u and v intersect, so the problems of
computing Boolean matrix multiplication and Boolean matrix-vector product can be
seen as computing many correlated copies of the set disjointness problem.

3.6.1 Tradeoffs for Boolean matrix multiplication

Unlike what we have shown for algebraic problems, as noted in (Klauck et al.,
2007), quantum algorithms for Boolean matrix multiplication have better time-space
tradeoff properties than their classical counterparts.

Proposition 3.41. For any c > 0, there are quantum circuits computing n×n Boolean
matrix multiplication A •B with error at most n−c using space O(log n) and a number
of queries T that is O(n2.5 log n).

Proof. Fix c > 0. Each of the n2 entries in the product is a disjointness function of
length n that can be computed with error at most n−c−2 and space O(log n) using
Grover’s algorithm in time O(

√
n log n) for error at most n−c overall.

112

This is in contrast to the following result of Abrahamson which shows that
classical algorithms as fast as this quantum algorithm require space Ω̃(n0.5) rather
than O(log n).

Proposition 3.42 ((Abrahamson, 1990)). There is a probability distribution on input
matrices and constants 0 < c1 < c2 under which the best classical algorithms (branching
programs) for Boolean matrix multiplication A •B using time T and space S require

T · S that is

Θ(n3.5) for T ≤ c1n
2.5

Θ(n3) for T ≥ c2n
2.5.

For quantum circuits, Klauck, Špalek, and de Wolf (Klauck et al., 2007) proved
the following time-space tradeoff lower bound which proves that the quantum algorithm
in Proposition 3.41 is nearly optimal when the space S is O(log n).

Proposition 3.43 ((Klauck et al., 2007)). Any bounded error quantum circuit that
computes the n× n Boolean matrix multiplication A •B with T queries and space S
requires T to be Ω(n2.5/S0.5).

A key difference between the methods used in Abrahamson’s bounds and our
results for linear algebra versus those in this proof is that we require that the set of
output values produced in each part of the computation is fixed independent of the
input. (See our discussion of such output-oblivious computation in Section 3.2.1.)
Such an assumption was essential for the quantum time-space lower bounds in (Klauck
et al., 2007; Ambainis et al., 2009), although the bound for multiple disjoint collision
pairs in (Hamoudi and Magniez, 2021) and our results in Sections 3.4 and 3.5 apply
to quantum query algorithms without such a restriction on output production. Fixing
the output values produced in each part of the computation allows one to go beyond
using a single hard distribution on inputs, and instead choose hard distributions for
each part of the computation depending on the target outputs. To give a sense of how
this works we sketch the lower bound method of (Klauck et al., 2007) for Boolean
matrix multiplication, which relies on a strong direct product lemma for the function
ORk

n (i.e. k independent copies of the OR function each on inputs of size n):

113

Proposition 3.44 (Strong Direct Product Theorem for ORk
n (Klauck et al., 2007)).

There are positive constants ε and γ such that the following hold:

(a) Any randomized algorithm making at most εkn queries has success probability at
most 2−γk in computing ORk

n.

(b) Any quantum algorithm making at most εk
√
n queries has success probability at

most 2−γk in computing ORk
n.

Proof sketch for Proposition 3.43. For any integer k ≤ n/2, the function ORk
⌊n/k⌋ can

be embedded in any set E ⊆ [n] × [n] of k outputs of the n × n Boolean matrix
product A • B as follows: Begin by dividing [n] into k blocks b1, . . . , bk each of size
⌊n/k⌋ (together with at most k− 1 other elements) and associate each (i, j) ∈ E, with
a distinct index ℓ = ℓ(i, j) ∈ [k]. For each (i, j) ∈ E, for ℓ = ℓ(i, j) set every entry in
Ai,bℓ

to 1 and set the vector of inputs in Bbℓ,j to the ℓ-th block of the input to ORk
⌊n/k⌋.

Set all other bits in A and B to 0. It is easy to see that the k outputs indexed by E
will be the outputs for k disjoint OR functions on ⌊n/k⌋ bits.

Without loss of generality one can assume that the space bound S is at most
αn for some small constant α > 0 since the number of queries must be Ω(n2) in the
worst case7. Choose k = cS for some suitably large constant c that depends on the
constant γ in Proposition 3.44. Begin by slicing the circuit into layers of ε

√
kn queries

each. There are Θ(T/
√
kn) such layers. By Proposition 3.44 and the embedding, any

circuit of depth ε
√
kn = εk

√
n/k queries can produce k correct output values with

probability only 2−γk for some γ > 0. This is the same depth as each of the layers but
each layer also gets an S qubit input-dependent state to begin. By Proposition 3.5,
the probability that the resulting layer can produce k correct output values is at most
2S2−γk which is at most 2−S if the constant c used in defining k is sufficiently large.

7Note that this is not completely obvious since quantum algorithms for some problems may have
a sublinear number of queries.

114

Therefore, the total number of correct output values that can be produced
with probability larger than 2−S must be O(T/

√
kn) · k which is O(T

√
S/n). On the

other hand this number of outputs produced must be at least n2. It follows that T
must be Ω(n2.5/

√
S).

Our improved lower bound

Theorem 3.45. Any quantum circuit computing n× n Boolean matrix multiplication
A •B with T queries and space S and success probability more than 2−S must have T
that is Ω(n2.5/S1/4).

Though the form of our lower bound may seem somewhat unusual, both the
exponent of n and that of S are optimal: The algorithm of Proposition 3.41 shows that
exponent of n is optimal since there is only a gap of O(log5/4 n) for space Θ(log n).
In our quantum query model, at the other end of the scale, an algorithm with space
3n2 can query and completely remember both matrices in 2n2 time and 2n2 space,
after which a single global unitary transformation will produce the n2 bits of output
needed in the remaining n2 qubits of working memory; hence the exponent of 1/4 on
S cannot be reduced.

Theorem 3.45 follows from the following key lemma which improves on the
corresponding bound in (Klauck et al., 2007) by a factor of Θ(k1/4).

Lemma 3.46. There are constants ε, γ > 0 such that the following holds. Let
k < n2/100 be an integer. For any quantum circuit C with at most εk3/4n1/2 queries
to x, the probability that C produces k correct output values of n× n Boolean matrix
multiplication A •B is at most 2−γk.

We first see how this lemma suffices for the theorem:

Proof of Theorem 3.45 via Lemma 3.46. Since there are n2 outputs, it seems that
T ≥ n2 queries are required, but that isn’t quite obvious. Nonetheless, we can, for

115

example, derive a T = Ω(n2) lower bound by applying Lemma 3.46 with k = n2/101
which shows that a circuit with at most some βn2 queries can only achieve exponentially
small success probability for producing a small fraction of the output. Therefore
without loss of generality we can assume that

√
S < αn for some arbitrarily small

constant α > 0. Let ε and γ be the constants from Lemma 3.46. Let c = 2/γ and
define k = cS. Therefore for α ≤ 1/(10

√
c) we obtain that 5

√
k = 5

√
cS < n/2. By

Lemma 3.46, since k < n2/100, any quantum query algorithm with at most εk3/4n1/2

queries has success probability at most 2−γk = 2−2S of producing k correct output
values.

We prove the contrapositive of the theorem statement: Suppose that T ≤
εn2.5/(cS)1/4 = εn2.5/k1/4. When we divide C into layers with εk3/4n1/2 quantum
queries each, there are at most n2/k layers. Since there are a total of n2 outputs, there
must be some layer i during which at least k outputs are produced. Let E be the set
of the first k outputs produced in layer i. By the argument above since the space is
at most S, by Proposition 3.5 the probability that these k outputs are correct given
the S qubits of input-dependent initial state at the beginning of layer i is at most
2S times larger than that of a circuit without them and the same number of queries,
which is at most 2S · 2−2S = 2−S which is what we needed to show.

The main idea behind the proof of this key lemma is an improved method for
embedding the direct product of OR functions into outputs of the Boolean matrix
multiplication problem; this uses the following definition of an L-coloring of subsets of
[n]× [n].

Definition 3.47. For E ⊆ [n] × [n] an L-coloring of E is a map χ : E → [L] such
that

• within each color class either all rows are distinct or all columns are distinct,
and

116

Figure 3.2: An example of a valid 3-coloring (as in Definition 3.47), where the pink
and green squares on the right matrix correspond to the colored outputs. For the left
two matrices, the black squares are fixed to the input 1 while the white square are
fixed to the input 0. The pink and green squares in the left two matrices encode an
input to OR4

4 whose outputs are the colored entries of the right matrix.

• for each color ℓ there is a rectangle given by sets Rℓ ⊆ [n] of rows and Cℓ ⊆ [n]
of columns such that the set of points of color ℓ is precisely E ∩ (Rℓ × Cℓ).

(Note that the rectangles Rℓ × Cℓ may overlap, but their overlap must not contain
any points in E, see Figure 3.2.)

We say that a rectangle R × C ∈ [n]× [n] is colorable iff E ∩ (R × C) either
has all its elements in different rows or all its elements in different columns.

The motivation for this definition is given by the following lemma.

Lemma 3.48. Let E ⊆ [n]× [n] with |E| = k and L be an integer with L ≤ n/2. If
E has an L-coloring then ORk

⌊n/L⌋ is a sub-function of the function that produces the
k outputs of A •B indexed by E for n× n Boolean matrices A and B.

Proof. Write E = ⋃̇L

ℓ=1Eℓ where Eℓ is the set of (i, j) in E in color class ℓ. We now
divide [n] into L disjoint blocks b1, . . . , bL of at least ⌊n/L⌋ ≥ 2 elements each. Given
the coloring and division into blocks, we define a partial assignment to the matrices A
and B as follows:

• If color class ℓ consists of points that do not share a column, for each (i, j) ∈ Eℓ,
we set all entries of Ai,bℓ

to 1 and leave all entries of Bbℓ,j unset.

117

• If color class ℓ consists of points that do not share a row, for each (i, j) ∈ Eℓ,
we set all entries of Bbℓ,j to 1 and leave all the entries of Ai,bℓ

unset.

• All entries of A and B that are not defined by the above two cases are set to 0.

In particular, this means that if Eℓ does not contain any element of the form
(i, ·) then the submatrix Ai,bℓ

is all 0 and if Eℓ does not contain any element of the
form (·, j) then the submatrix Bbℓ,j is all 0.

It remains to show that the outputs in E of this matrix product are k disjoint
ORs on at least ⌊n/L⌋ bits each.

Observe that if the color of (i, j) is ℓ, there cannot be another color ℓ′ ̸= ℓ and
i′ ̸= i, j′ ̸= j such that (i, j′), (i′, j) ∈ E both have color ℓ′, as this would violate the
rectangle condition for color ℓ′. This implies that either all entries of Ai,bℓ′ are 0 or all
entries of Bbℓ′ ,j are 0 for all ℓ′ ̸= ℓ. Therefore, assuming that (i, j) is colored ℓ, the
(i, j) entry of the product must equal Ai,bℓ

•Bbℓ,j.

If color class Eℓ consists of points that do not share a column then the output
for each (i, j) ∈ Eℓ is the OR of the ≥ ⌊n/L⌋ unrestricted input bits of Bbℓ,j; the
inputs for different (i, j) are disjoint since no two points of Eℓ share a column. The
analogous property holds for each color class Eℓ whose points do not share rows. In
that case, each output (i, j) ∈ Eℓ is the OR of ≥ ⌊n/L⌋ unrestricted input bits of
Ai,bℓ

and input bits of Ai,bℓ
are disjoint from each other. Finally, the disjointness of

the inputs to the OR functions associated with different color classes is inherited from
the disjointness of b1, . . . , bL, and the lemma follows since |E| = k.

The lower bound of (Klauck et al., 2007) in Proposition 3.43 embedded ORk
⌊n/k⌋

into any set E of k outputs of A • B. Their argument corresponds to the trivial
k-coloring that assigns each element of E to its own color class.

Definition 3.49. For integer k > 0 define Lα(k) to be the minimum number of colors
L such that for all subsets E ⊆ [n] × [n] with |E| ≤ k, there is an L-coloring of a
subset E ′ ⊆ E with |E ′| ≥ α|E|.

118

Lemma 3.50. There are constants c, c′ > 0 such that the following holds. Let α > 0
and k be an integer such that Lα(k) ≤ n/2. For any quantum circuit C with at most
ckn1/2/Lα(k)1/2 queries to x, the probability that C produces k correct output values
of n× n Boolean matrix product A •B is at most 2−c′αk.

Proof. Let E be any fixed set of k output positions in A •B. We show that for each
fixed value of E the probability that C can correctly guess the output values at these
indices is exponentially small in k. Let L ≤ Lα(k) be such that there is an L-coloring
of a subset E ′ ⊆ E with |E ′| ≥ α|E|. By Lemma 3.48, OR⌈αk⌉

⌊n/L⌋ is a sub-function of the
⌈αk⌉ outputs indexed by the set E ′. Since L ≤ n/2, ⌊n/L⌋ ≥ 2n/(3L) and

√
⌊n/L⌋ ≥

4
√
n/L/5. Choose c = 4εα/5 and c′ = γ for ε and γ given in Proposition 3.44. By that

proposition, the probability that C produces the values of these k outputs correctly
is at most the probability that C produces the ⌈αk⌉ outputs in E ′ correctly which is
2−γ⌈αk⌉ ≤ 2−c′αk.

Then Lemma 3.46 is an immediate corollary of Lemma 3.50 and the following
bound on L1/2(k).

Lemma 3.51 (Coloring Lemma8). L1/2(k) ≤ 2
√

6k < 5
√
k.

Proof. Without loss of generality, E is contained in a grid with side lengths at least
n > 2

√
6k, as otherwise we could just use a single color for each row (or column). For

a given subset A ⊆ [n] or rows or columns, we use A to denote [n] \ A.

Our strategy is as follows: for some constant c to be determined we show that
either

1. there is a row containing at least c
√
k points of E, or

8In a preliminary version of the paper this chapter is based on, there was an error in this lemma,
which claimed to show that L1(k) ≤ 2

√
6k. We thank the anonymous reviewers for asking the

question that led to us find and address this error.

119

2. there is a rectangle R×C such that there are at least c
√
k points in the rectangle,

all of which can be colored with a single color. Moreover, in this case, we show
that |(R× C) ∩ E| ≤ |(R× C) ∩ E|.

We now argue why the above two conditions are enough to prove that L1/2(k) ≤ 2
c

√
k.

If we colored a single row or column, then we can inductively color the remaining
points of E ′ ⊆ E outside that row/column with no issue. However, if we colored
the points in R× C, inductively coloring the remaining points could cause an issue
because of the rectangle requirement for colors. To address this, we discard the points
of (R × C) ∩ E and proceed inductively on E ′ := E ∩ ([n] × C). At the end of the
procedure, since we always color at least the number of points we discard, we will
have discarded at most k/2 points, as desired.

It remains to show that this such a coloring would always use at most 2
c

√
k

colors. We prove this using induction. Indeed, applying induction to color at least
1/2 of the remaining k′ ≤ k − c

√
k elements of E ′ in [n] × C will require at most

2
c

√
k′ = 2

c

√
k − s ≤ 2

c

√
k(1 − 2s

k
) ≤ 2

c

√
k − 1 colors. It follows that at most 2

c

√
k

colors are needed to color at least 1/2 the points in E, as required.

We now show that we can execute this strategy with the constant c = 1/
√

6,
which will prove the lemma. That is, we show how to find either a row containing at
least

√
k/6 points of E or a colorable rectangle R×C with at least

√
k/6 points of E

such that |E ∩ (R× C)| ≤ |E ∩ (R× C)|.

For any column j we write Ej for the set of i such that (i, j) ∈ E. Build R×C
in the following way:9

First, observe that at the end of the procedure (and indeed at the end of every
iteration) the rectangle R× C contains exactly one element of E in every row, every

9In Algorithm 1, instead of the constant 3/4 in Algorithm 1, we could have chosen any (1− γ)
instead. In this case, we would achieve a bound for L1−2γ(k) ≤ 2

√
1−γ

γ(1−2γ) k. For simplicity, we have
chosen γ = 1/4, which is quite close to optimal and has a larger value of α = 1− 2γ.

120

Algorithm 1 Finding a colorable rectangle with many points.
Initialize R← ∅; C ← ∅; D ← ∅
while there is a j such that |Ej \ (R ∪D)| ≥ 3

4 |E
j| do

C ← C ∪ {j}
D ← D ∪ (R ∩ Ej)
R← (R \ Ej) ∪ (Ej \D)

return R× C

Figure 3.3: Visualization of a single iteration of Algorithm 1.

row of D × C contains at least two elements of E, and there are no elements of E in
(R ∪D)× C – see Figure 3.3 for a visualization of these observations.

Our first simple claim lets us bound the number of points in R× C.

Claim 3.52. |E ∩ (R× C)| ≤ |E ∩ (R× C)|, and |D| ≤ |R|/2.

Proof of Claim. The claim is true initially. Suppose that it is true at the beginning of
an iteration. When we add j to C on Algorithm 1, we have |Ej \ (R ∪D)| ≥ 3|Ej|/4,
and therefore have |R ∩ Ej| ≤ |Ej|/4.

Algorithm 1 therefore adds at most |Ej|/4 row indices to D. Since each element
of R×C contained exactly one element of E at the end of the previous iteration, each
row added to D by Algorithm 1 has exactly two points of E in the columns of C and
there are no points of E in (R ∪D)× C, the iteration adds at most 2|Ej|/4 = |Ej|/2
points of E to R× C.

On the other hand, Algorithm 1 adds at least 3|Ej|/4 elements of Ej to R and
only removes the at most |Ej|/4 elements of R ∩ Ej, so R grows by at least |Ej|/2

121

rows in total. Since each row of R× C has exactly one point in the columns of C, at
least |Ej|/2 points of E get added to R× C.

Counting rows, we have added at most |Ej|/4 rows to D and at least |Ej|/2
rows to R, which maintains that |D| ≤ |R|/2.

Counting points, the increase in size of E ∩ (R× C) is at most |Ej|/2 which
lower bounds the net gain for E∩(R×C). This maintains |E∩(R×C)| ≤ |E∩(R×C)|
as required.

We let s be the larger of |R| and the maximal number of points in E of any
row. For convenience, write Z = R ∪D.

When Algorithm 1 finishes, for every column j ∈ C, fewer than 3/4 of its
points are in rows of Z and hence more than 1/4 of its points are in rows of Z. So we
must have that

|E ∩ (Z × C)| > |E ∩ (Z × C)|/3.

As Z×C has no points of E and each row has at most s points of E, the total number
of points is

k = |E ∩ (Z × [n])|+ |E ∩ (Z × [n])|

= |E ∩ (Z × [n])|+ |E ∩ (Z × C)|

≤ |E ∩ (Z × [n])|+ 3|E ∩ (Z × C)|

≤ 4|Z| s ≤ 4 · (3|R|/2) s ≤ 6s2.

Therefore s ≥
√
k/6.

Lemma 3.46 is an immediate corollary of Lemmas 3.50 and 3.51 which completes
the proof of Theorem 3.45.

We also obtain a general classical lower bound from these arguments. We start
by showing a classical analogue of Lemma 3.50.

122

Lemma 3.53. Let ε, γ > 0 be the constants from Proposition 3.44. Let k be an integer
such that L(k) ≤ n/2. Any randomized algorithm with at most (2ε/3)kn/L(k) queries
to x can only produce k correct output values of n× n Boolean matrix product A •B
with probability at most 2−γk.

Proof. Let E be any fixed set of k output indices in A • B. Let L ≤ L(k) be the
smallest number such that E can be colored with L colors. By Lemma 3.48 we know
that ORk

⌊n/L⌋ is a sub-function of the outputs indexed by E. Thus, by Proposition 3.44
any randomized algorithm making at most εk ⌊n/L⌋ ≥ (2ε/3)kn/L(k) queries can
compute these outputs with probability at most 2−γk.

Theorem 3.54. Any output-oblivious classical query algorithm computing n × n

Boolean matrix-multiplication with T queries and space S with success probability more
than 2−S must have T that is Ω(n3/

√
S).

Proof. Since there are n2 outputs, which is a trivial time lower bound for sequential
algorithms, we can assume that

√
S is at most αn for some arbitrarily small constant

α > 0. Let c = 2/γ for γ given by Proposition 3.44 and let k = cS. Our assumption
with α < 1/(10

√
c) implies, by Lemma 3.51 that L(k) < 5

√
k = 5

√
cS < n/2.

The main difference in parameters from the quantum case is that we need to apply
Lemma 3.53 instead of Lemma 3.50 to say that classical output-oblivious branching
programs of width 2S have success probability at most 2−γk = 2−2S of computing k
correct output values of A •B. There are at most 2S nodes at a layer boundary and
hence the probability that a layer of height (2ε/3)kn/L(k) correctly produces k output
values is at most 2−S. Rewriting using L(k) < 5

√
k, we obtain that a layer of height

(2ε/15)
√
k n correctly produces outputs with probability at most 2−S. Since there are

n2 outputs, for any circuit of depth T at most (2ε/15)n3/
√
k must have some layer

of depth 2ε/15)
√
k n during which at most k outputs are produced and each output

value must be correct for the algorithm to be correct, so the overall success probability
is at most 2−S.

123

This achieves the goal suggested by Klauck, Špalek, and de Wolf (Klauck
et al., 2007) who ventured that the likely tight tradeoff for classical computation of
Boolean matrix multiplication is T 2S = Ω(n6). Note that our quantitative bound
asymptotically dominates the bounds of Abrahamson Proposition 3.42 for all values
of S; it always is at least as large (up to a constant factor) and the only regimes
where our quantitative bound does not strictly dominate that of Abrahamson are
when S is Θ(1) and when S is Θ(n). Of course, Abrahamson’s lower bounds are
for the branching program model which allows for the timing of each output bit
to depend on the input. (The classical lower bound of (Klauck et al., 2007) for
output-oblivious query algorithms is exactly the same as that of Abrahamson for space
O(
√
n).) Abrahamson’s bound on the number of queries becomes the trivial Θ(n2)

when S = Θ(n3/2) which is tight for the distribution used in Abrahamson’s paper,
whereas the lower bound of Theorem 3.54 remains non-trivial so long as S is o(n2). In
fact, just as with our quantum lower bound in Theorem 3.45, the exponents of n and
S in Theorem 3.54 are optimal for a circuit model that allows arbitrary gates between
queries since that would allow the circuit to simulate a decision tree of height 2n2 that
reads and remembers the entire input and produces all of the outputs at its leaves;
our lower bounds also apply to such a model. See Figure 3.4 for a comparison of our
lower bounds with those of prior work for both classical and quantum computation.

Using the same proof idea as in Corollary 3.40, the bounds in Theorems 3.45
and 3.54 immediately imply lower bounds for Boolean matrix squaring.

Corollary 3.55. Any quantum circuit computing n× n Boolean matrix squaring on
all inputs with T queries, space S, and success probability more than 2−S must have T
that is Ω(n2.5/S1/4). Any such output-oblivious classical query algorithm must have T
that is Ω(n3/S1/2).

124

0 0.5 1 1.5 21

1.5

2

2.5

3

logn S

lo
g n
T

Quantum Boolean Matrix Multiplication

Theorem 3.45
(Klauck et al., 2007)

0 0.5 1 1.5 21

1.5

2

2.5

3

logn S

lo
g n
T

Classical Boolean Matrix Multiplication

Theorem 3.54
(Klauck et al., 2007)
(Abrahamson, 1990)

Figure 3.4: Comparison of our lower bounds for Boolean matrix multiplication with
those of prior work for both quantum and classical computation. The shaded region
comes from the fact that the time must always be Ω(n2). The endpoints mark choices
of parameters where the upper and lower bounds match.

3.6.2 Boolean matrix-vector product

Finally, we discuss the problem of quantum computation of Boolean matrix-
vector product and the closely-associated problem of systems of linear inequalities.
Here, rather than producing quantitative improvements which seem unlikely, we focus
on a qualitative improvement in existing results.

Though (Abrahamson, 1990) does not contain an explicit theorem statement
on time-space tradeoffs for Boolean matrix-vector products that is the analog of the
linear algebra bound in (Abrahamson, 1991) or our Theorem 3.21, (Abrahamson,
1990) contains the claim that analogous results do indeed hold for this problem using
the same ideas. (The lower bound would be a factor n smaller than the lower bound
for linear algebra.)

For quantum circuits, Klauck, Špalek, and de Wolf (Klauck et al., 2007) prove
the following results for computing Boolean matrix-vector products. (They also prove
a similar result for the case of output-oblivious classical query algorithms, though that
does not apply to unconstrained branching programs.)

125

Proposition 3.56 (Theorem 23 in (Klauck et al., 2007)). For every S in o(n/ log n),
there is an n× n Boolean matrix A(S) such that every bounded-error quantum circuit
with space at most S that computes Boolean matrix-vector product A(S) •x in T queries
requires that T is Ω(

√
n3/S) = Ω(n1.5/S0.5).

This result is weaker than a standard time-space tradeoff since the function
involved is not independent of the circuits that might compute it. In particular,
(Klauck et al., 2007) does not find a single function that is hard for all space bounds,
as the matrix A(S) that they use changes depending on the value of S. Because (Klauck
et al., 2007) does not express this dependence in the statement of their results, we
provide a detailed discussion of their arguments to make the need for that dependence
clear. We will also need their definitions in our results.

For S = o(n/ log n), the matrix A(S) is produced via the probabilistic method
using the following distribution: Choose k to be a sufficiently large constant multiple of
S. This distribution chooses matrices A ⊆ {0, 1}n×n by selecting a uniformly random
subset of n/(2k) positions in each row to set to 1, with the remainder of the entries
in each row being 0. They show that with positive probability over the choice of A,
for all sets I ⊆ [n] of size k, at least k/2 of the rows of AI contain at least n/(6k) 1’s
that are unique in their column of AI ; that is, those columns are 0 in all of the k − 1
other rows of AI . A(S) is then some fixed matrix for which this property is true.

More precisely, when we fix a row j ∈ I and the n/(2k) columns where it is
1, the expected number of the (k − 1)n/(2k) < n/2 1’s among the rows in I \ {j}

that land in those n/(2k) columns is less than n/(4k). By a Hoeffding bound, the
number of those 1’s is at most n/(3k) except with probability exponentially small in
n/k, which is n−ω(1) since k = O(S) = o(n/ log n). Hence, except with probability
n−ω(1), a row j ∈ I is good for I in that at least n/(2k)− n/(3k) = n/(6k) of the 1’s
in row j are unique in their respective columns in AI . For a fixed I, the probability
that there is no J ⊆ I of size k/2 all of whose rows are good for I is less than the
probability that there are k/2 rows of I that are not good for I. This happens with

126

probability at most n−ω(k) since are at most
(

k
k/2

)
such subsets of rows of size k/2,

each of which is not good for I with probability n−ω(k) (and the probabilities are
negatively associated). Since there are only

(
n
k

)
choices of I, the total probability that

A does not have desired properties is only n−ω(k).

The proof of Proposition 3.56 follows from the usual time-space lower bound
methodology and the following lemma:

Lemma 3.57. There is an α > 0 such that for every quantum circuit C that makes
at most α

√
kn queries to x ∈ {0, 1}n, the probability that C produces at least k correct

output values of A(S) • x is at most 2−Ω(k).

Proof. Let I ⊆ [n] be the set of indices of the first k outputs of A(S) • x produced
by C. Let J ⊆ I be the set of size k/2 rows that are good for I guaranteed by the
properties of A(S). We show that the probability that C produces all outputs even
for the rows in J is exponentially small in k: For each row j ∈ J there is a set Cj of
n/(6k) columns of A(S)

I where the unique 1 is in row j. Consider the restriction to
input vectors x ∈ {0, 1}n that are 0 outside of ⋃j∈J Cj. Then the outputs for j ∈ J
are a direct product of k/2 OR functions of size n/(6k) on the bits of ⋃j∈J Cj. By a
strong direct product theorem for OR (Theorem 14 of (Klauck et al., 2007)), for ε a
sufficiently small constant, any circuit of height at most ε(k/2)

√
n/(6k) = ε

√
kn/24

is correct with probability at most 2−γk for some constant γ > 0.

On the algorithmic side, we have the following:

Proposition 3.58. For every c > 0 and every Boolean matrix A ∈ {0, 1}m×n there
is a quantum circuit using space O(log n) and time O(mn1/2 logm) that computes
Boolean matrix-vector product A • x with error at most m−c. More precisely, the
algorithm runs in time O(|A|1/2 logm) where |A|1/2 = ∑m

i=1

√
|Ai|1.

Proof. For each row in turn, run Grover’s algorithm to compute the OR of the bits
indexed by the 1’s of Ai, the i-th row of A with probability of error at most m−c−1

per row for a total error of at most m−c.

127

We note that for the fixed matrix A(S), each row has Θ(n/S) 1’s so |A(S)|1/2 =
Θ(n3/2/S1/2). This is an odd situation in that the matrix A(S) designed to require
large time for space S algorithms can be solved in nearly the same time bound by
space O(log n) algorithms.

Systems of linear inequalities The same space-dependent matrix A(S) in
Proposition 3.56 was also used in (Ambainis et al., 2009) for systems of inequalities.

Proposition 3.59 (Theorem 11 in (Ambainis et al., 2009)). Let b⃗ be the length n

all-b vector. For every S in min(O(n/b), o(n/ log n)) there exists an n × n Boolean
matrix A(S) such that every bounded error quantum circuit with space at most S that
decides the system A(S)x ≥ b⃗ of n inequalities requires that T is Ω(

√
bn3/S).

Similar to (Klauck et al., 2007) this matrix is used so that any quantum circuit
that computes A(S)x ≥ b⃗ can be broken down into slices that solve independent
instances of the b-threshold function.

Our results

Using Proposition 3.56, we can obtain a time-space tradeoff lower bound for
quantum computation of Boolean matrix-vector product that has an only slightly
weaker lower bound in terms of the matrix dimensions but, unlike the previous bound,
defines a fixed computational problem whose definition is independent of the space
bound allowed.

Theorem 3.60. There is a fixed m×n Boolean matrix A with m ≤ n log2 n such that
for every S that is o(n/ log n) every bounded-error quantum circuit with space at most
S that computes Boolean matrix-vector product A • x in T queries requires that T is
Ω(
√
n3/S).

Proof. The matrix A consists of a stacked version of the matrices A(Si) from Propo-
sition 3.56 for each choice of Si = 2i log2 n and 0 ≤ i ≤ log2 n − 2 log2 log2 n − ω(1).

128

Any quantum circuit computing A • x using space S must compute A(Si) • x for some
Si where Si ≤ S is within factor of 2 of S. It is easy to see that the construction of
A(S) for Proposition 3.56 is flexible in terms of the constant factor by which k exceeds
S and hence computing matrix A(Si) • x also requires time T that is Ω(

√
n3/S) as

required.

Systems of linear inequalities This same matrix A can be substituted
into Proposition 3.59 to obtain a time-space tradeoff for systems of inequalities.

Corollary 3.61. Let b⃗ be the length n all-b vector. There is a fixed m× n Boolean
matrix A with m ≤ n log2 n such that for every S in min(O(n/b), o(n/ log n)) every
bounded error quantum circuit with space at most S that decides the system Ax ≥ b⃗

requires T that is Ω(
√
bn3/S).

3.7 Deterministic query algorithms

Here we review the matching time-space space tradeoffs that match our quantum
and classical lower bounds. Most of these results were mentioned in (Abrahamson,
1991) but are more fully sketched here. In the following, for simplicity, we describe
versions of several of these algorithms over finite fields rather than finite subsets of
size d over arbitrary fields. For the more general case, the output values are sums
of products of input values and may take more bits to represent; because of this the
log p in our bounds below can be replaced by O(max log d, log n).

The first gives classical algorithms for matrix-vector products matching Theo-
rem 3.21.

Proposition 3.62. Let A be any n × n matrix over a finite field Fp. For any
S ∈ [log2 n, n log2 p] there is a deterministic classical query algorithm computing the
matrix vector product f(x) = Ax for all inputs x ∈ Fp that uses space S and only
O(n2 log p /S) queries to the input.

129

Proof. Let s = S/ log2 p. The query algorithm (which has the matrix A encoded in it)
reads one entry of the input x at a time and maintains a block of s different partial
sums (using s log2 p space). This algorithm produces S outputs every n queries and
thus produces all outputs with n2/s = n2 log2 p /S queries.

Note that in the special case of computing the Discrete Fourier Transform
(DFT) (Corollary 3.26), this deterministic query bound can be made explicit using
standard operations:

Proposition 3.63 ((Savage and Swamy, 1978)). There is a deterministic classical
algorithm computing the Discrete Fourier Transform (DFT) DFTn(x) = Wx using
space S ≥ log2 n and time O(n2/S + n logS).

Proof. Assume without loss of generality that S and n are powers of 2 and we have
O(S) space. This follows by evaluating the graph of the fast Fourier transform (FFT)
algorithm for computing the DFT as shown in Figure 3.5. In a single pass over the

Figure 3.5: The FFT graph with the space-efficient evaluations on one pass highlighted.

input x in O(n + S logS) time the algorithm can compute the values of S of the
outputs using space O(S) as follows: while maintaining log2(n/S) ≤ S entries for
the depth-first evaluation of each subproblem at depth log2 S and uses space 2S to
iterate through the top log2 S levels which are evaluated together in a size S FFT
computation. This pass is repeated for each of the n/S such blocks in turn.

130

The following deterministic algorithms for convolution match Corollary 3.28.

Proposition 3.64. For any S ∈ [log2 n, n log2 p] there is a deterministic classical
query algorithm that computes the convolution f(u, v) = u ∗ v where u, v ∈ Fn

p that
uses S space and only O(n2 log p /S) queries.

Proof. Let s = S/(2 log2 p). The indices of u, v and w = u ∗ v are reduced modulo n.
The query algorithm computes outputs wi, . . . wi+s of the convolution as follows: Ini-
tialize wi, . . . wi+s to the value zero. First query and record the values of vi−1, . . . vi+s−1.
Then query values of u one at a time in increasing order (u1, u2, . . . un). After reading
uj, for each k ∈ {i, . . . , i+ s}, add uj · vk−j to the value of wk. Then forget the value
of vi+s−j and query the value of vi−j−1, remembering this value. After all of u has
been queried, we have that wk = ∑

j∈[n] ujvk−j which is the correct value for these
outputs. Repeating this procedure n/s times gives the convolution of u and v using
only S space and 2n queries per iteration. Since there are n/s iterations, we get
O(n2 log p /S) queries.

The algorithms below show that our matrix-inversion lower bound for upper-
triangular matrices in Corollary 3.34 cannot be improved for large space bounds, even
for deterministic query algorithms. This is open for small space bounds.

Proposition 3.65. For any S ∈ [n log2 p, n
2 log2 p] there is a deterministic classical

query algorithm computing the inverse f(A) = A−1 where A ∈ Fn×n
p is a unit upper

triangular matrix that uses S space and only O(n4 log p /S) queries.

Proof. Let s = S/(2n log p). We will produce columns j1, . . . js of A−1 as follows: Let
ej be the column vector with entry 1 at index j and 0 everywhere else. We use back
substitution to solve the systems Ax1 = ej1 , . . . , Axs = ejs by querying each entry of
A exactly once. In particular, the i-th entry of xk is 1−∑ℓ∈[n−i] Ai,n−ℓ+1xn−ℓ+1 when
i = k and −∑ℓ∈[n−i] Ai,n−ℓ+1xn−ℓ+1 otherwise. We start by computing the n-th entry
of each xk and work backward toward the first entry. We record each entry of each xk

131

as is it computed for use in the subsequent computational steps. Note that the i-th
entries of all the xk only require making queries to the i-th row of A and so all the
xk can be computed with only O(n2) queries. Finally, each xk is output as the jk-th
column of A−1. This procedure uses O(n2) queries and at most S space to produce
s columns of the output. Thus the procedure must be repeated n/s = 2n2 log p /S
times to produce all n columns of output. This gives a total query complexity of
O(n4 log p /S).

The following gives deterministic algorithms for our matrix-multiplication,
Boolean matrix-multiplication (Theorems 3.36 and 3.45) and squaring lower bounds
(Corollaries 3.40 and 3.55).

Proposition 3.66. There are deterministic query algorithms for n×n Matrix Multipli-
cation over Fp using space S that make O(n3√log p/

√
S) queries. Further, O(n3/

√
S)

queries suffice for deterministic algorithms using space S to compute n× n Boolean
Matrix Multiplication.

Proof. Let s = S/(3 log p). We partition each input matrix A and B into
√
s ×
√
s

blocks Aij and Bij for i, j ∈ [ℓ] where ℓ = n/
√
s. We compute the

√
s ×
√
s blocks

Cij of the product as follows: Initialize the block Cij to 0. For k = 1 to ℓ, query all
entries of Aik and Bkj and add their product AikBkj to Cij. The 3 matrices Aik, Bkj,
and Cij together require space S since each entry can be expressed using log p bits.
The total number of queries to compute Cij is n

√
s and there are ℓ2 = n2/s blocks to

compute for a total of n3/
√
s = O(n3√log p/

√
S) queries as claimed.

The query algorithm for Boolean Matrix Multiplication is analogous with
s = S/3 and entry-wise ∨ instead of addition.

Finally, we see that the matrix triple-product and cubing lower bounds in Corol-
laries 3.32 and 3.33 have matching deterministic query algorithms.

132

Proposition 3.67. For any S ∈ [log2 n, n
2 log2 p] there is a deterministic classical

query algorithm computing the Matrix Triple Product f(A,B,C) = ABC where
A,B,C ∈ Fn×n

p that uses S space and only O(n4 log p /S) queries.

Proof. Let s = S/(4 log p). We view the product ABC as (AB)C and use the
same strategy as in Proposition 3.66 to compute partial products of (AB) and then
ABC. We partition the input, partial product, and output matrices into blocks
Aij, Bij, Cij, (AB)ij, and (ABC)ij for i, j ∈ [ℓ] where ℓ = n/

√
s. To compute (AB)ij

we initialize the values in the block to zero. Then, for each k ∈ [ℓ], we query each
Aik and Bkj and then perform the multiplication of these submatrices, adding the
result into (AB)ij. After iterating over all k, we have computed the value of (AB)ij.
Now to compute (ABC)ij we start by initializing the values in (ABC)ij to zero. For
each k ∈ [ℓ], we first compute (AB)ik as a subroutine and then query Ckj and add the
partial product (AB)ikCkj into (ABC)ij . After iterating over all k, we have computed
the block (ABC)ij . This query algorithm stores at most 4 different

√
s×
√
s blocks at

any time step. It requires
√
sn queries to compute each (AB)ij and needs to compute

n/
√
s such blocks for each (ABC)ij. Adding the

√
s queries to C needed to compute

(ABC)ij gives n
√
s(1 + n/

√
s) total queries to compute each block (ABC)ij. Since

there are n2/s such blocks, we get O(n4/s) or O(n4 log p /S) queries.

133

Chapter 4: Cumulative memory lower bounds for
randomized and quantum computation

4.1 Introduction

Understanding time-space tradeoffs in terms of the time versus the maximum
space used during an algorithm appropriate when machines must allocate said space
throughout the computation. However, recent technologies like AWS Lambda (Baird
et al., 2021) suggest that in the contexts that include high performance and cloud
computation, space can be allocated to a program only as it is needed. When using
such services, analyzing the average memory used per step leads to a more accurate
picture than measuring the maximum space used.

Cumulative memory (CM), the sum over time of the space used per step of
an algorithm, is an alternative notion of time-space complexity that is more fair to
algorithms with rare spikes in memory. Cumulative memory complexity was introduced
by Alwen and Serbinenko (Alwen and Serbinenko, 2015) who devised it as a way to
analyze time-space tradeoffs for “memory hard functions” like password hashes. Since
then, lower and upper bounds on the cumulative memory of problems in structured
computational models using the irreversible pebble game have been extensively studied,
beginning with the work of (Alwen and Serbinenko, 2015; Alwen and Blocki, 2016;
Ren and Devadas, 2016; Alwen et al., 2017b, 2016, 2017a). Structured models via
pebble games are natural in the context of the random oracle assumptions that are
common in cryptography. By carefully interweaving their memory-intensive steps,
authors of these papers devise algorithms for cracking passwords that compute many
hashes in parallel using only slightly more space than is necessary to compute a single
hash. While such algorithms can use parallelism to amortize costs and circumvent
proven single instance TS complexity lower bounds, their cumulative memory always
scales linearly with the number of computed hashes. Strong results for cumulative

134

memory have also been shown for the black-white pebble game and have been used to
derive related bounds for resolution proof systems (Alwen et al., 2017c).

The ideas used for these structured models yield provable separations between
cumulative memory and time-space product complexity in pebbling and random oracle
models. The key question that we consider is whether the same applies to general
models of computation without cryptographic or black-box assumptions: Are existing
time-space tradeoff lower bounds too pessimistic for a world where cumulative memory
is more representative of a computation’s cost?

Our Results

The main answer we provide to this question is negative for both classical
and quantum computation: We give generic methods that convert existing paradigms
for obtaining time-space tradeoff lower bounds involving worst-case space to new
lower bounds that replace the time-space product by cumulative space, immediately
yielding a host of new lower bounds on cumulative memory complexity. With these
methods, we show how to extend virtually all known proofs for time-space tradeoffs to
equivalent lower bounds on cumulative memory complexity, implying that there cannot
be cumulative memory savings for these problems. Our results, like those of existing
time-space tradeoffs, apply in models in which arbitrary sequential computations may
be performed between queries to a read-only input. Our lower bounds also apply to
randomized and quantum algorithms that are allowed to make errors.

Classical computation We first focus on lower bound paradigms that apply to
computations of multi-output functions f : Dn → Rm. Borodin and Cook (Borodin
and Cook, 1982) introduced a method for proving time-space tradeoff lower bounds
for such functions that takes a property such as the following: for some K = K(R, n),
constant γ, and distribution µ on Dn:

135

(*) For any partial assignment τ of k ≤ γm output values over R and any restriction
(i.e., partial assignment) π of h = h(k, n) coordinates on Dn,

Pr
x∼µ

[f(x) is consistent with τ | x is consistent with π] ≤ K−k

and derives a lower bound of the following form:

Proposition 4.1 ((Borodin and Cook, 1982)). Assume that Property (*) holds for
f : Dn → Rm with γ > 0 constant. Then, T (S+log2 T) is Ω(m h(S/ log2 K,n) logK).

In particular, since S ≥ log2 n is essentially always required, if we have the
typical case that h(k, n) = k∆ h1(n) for some function h1(n) and constant ∆ then
this says that T · S1−∆ is Ω(m h1(n) log1−∆ K) or, equivalently, that max(S, log n) is
Ω([(m h1(n)/T]1/(1−∆) logK). As a simplified example of our new general paradigm,
we prove the following analog for cumulative complexity:

Theorem 4.2. Suppose that Property (*) holds for f : Dn → Rm with h(k, n) =
k∆h1(n) and γ > 0 constant. If T log2 T is o(m h1(n) logK) then any algorithm
computing f requires cumulative memory Ω

([
(m h1(n))1/(1−∆) logK

]
/T∆/(1−∆)

)
.

We note that this bound corresponds exactly to the bound on the product
of time and space from the Borodin-Cook method. The full version of our general
theorem for randomized computation (Theorem 4.23) is inspired by an extension made
by Abrahamson (Abrahamson, 1991) to the Borodin-Cook paradigm that expands it
coverage it to average case complexity.

Quantum computation We develop an extension of our general approach that
applies to quantum computation as well. In this case Property (*) and its extensions
that we use for our more general theorem must be replaced by statements about
quantum circuits with few queries. We first generalize the quantum time-space tradeoff
for sorting proven in (Klauck et al., 2007), which requires that the time order in

136

Problem TS Bound Source CM Bound
Ranking, Sorting Ω(n2/ log n) (Borodin and Cook, 1982) Theorem 4.13

Unique Elements Ω(n2) (Beame, 1991) Theorem 4.29

Matrix-Vector Product Ω(n2 log d) (Abrahamson, 1991) Theorem 4.31

Matrix Multiplication Ω((n6 log d)/T) (Abrahamson, 1991) Theorem 4.34

Q Sorting Ω(n3/T) (Klauck et al., 2007) Theorem 4.19

Q Mat-Vec Product Ω(n2 log d) Theorem 3.21 Corollary 4.38

Q Matrix Mult Ω((n6 log d)/T) Theorem 3.36 Corollary 4.40

Q k Disjoint Collisions Ω(k3n/T 2) (Hamoudi and Magniez, 2021) Theorem 4.37

Q Bool Matrix Mult Ω(n10/T 3) Theorem 3.45 Corollary 4.41

Table 4.1: All cumulative memory bounds match the time-space product lower bound
when considering RAM computation or quantum circuits. For the linear algebra
problems, we assume inputs come from a fixed subset D of a field with d = |D|.
Results above the double line are for classical computation while those below are for
quantum computation.

which output values are produced must correspond to the sorted order, to a matching
cumulative memory complexity bound of Ω(n3/T) that works for any fixed time-
ordering of output production, yielding a more general lower bound. For example,
an algorithm may be able to determine the median output long before it determines
the other outputs. We then show how an analog of our classical general theorem can
be applied to extend to paradigms for quantum time-space tradeoffs to cumulative
memory complexity bounds for other problems.

A summary of our results for both classical and quantum complexity is given
in Table 4.1, including an extension of our work in Chapter 3 to cumulative memory
lower bounds.

Prior work Alwen and Serbinenko (Alwen and Serbinenko, 2015) introduced parallel
cumulative (memory) complexity as a metric for analyzing the space footprint required

137

to compute memory hard functions (MHFs), which are functions designed to require
large space to compute. Most MHFs are constructed using hashgraphs (Dwork et al.,
2005) of DAGs whose output is a fixed length string and their proofs of security are
based on pebbling arguments similar to those in Chapter 2 on these DAGs while
assuming access to truly random hash functions for their complexity bounds (Alwen
and Serbinenko, 2015; Boneh et al., 2016; Ren and Devadas, 2016; Alwen et al.,
2017a,b; Blocki and Zhou, 2017). (See Section 4.3 for their use in separating CM and
TS complexity.) Recent constructions do not require random hash functions; however,
they still rely on cryptographic assumptions (Chen and Tessaro, 2019; Ameri et al.,
2022).

Our methods At the highest level, we employ part of the same paradigms previously
used for time-space tradeoff lower bounds that we demonstrated in Chapter 3. Namely
breaking up the computations into blocks of time and analyzing properties of the
branching programs or quantum circuits based on what happens at the boundaries
between time blocks. However, for cumulative memory complexity, those boundaries
cannot be at fixed locations in time and their selection needs to depend on the space
used in these time steps.

Further, in many cases, the time-space tradeoff lower bound needs to set the
lengths of those time blocks in a way that depends on the specific space bound. When
extending the ideas to bound cumulative memory usage, there is no single space
bound that can be used throughout the computation; this sets up a tricky interplay
between the choices of boundaries between time blocks and the lengths of the time
blocks. Because the space usage within a block may grow and shrink radically, even
with optimal selection of block boundaries, the contribution of each time block to the
overall cumulative memory may be significantly lower than the time-space product
lower bound one would obtain for the individual block.

We show how to bound any loss in going from time-space tradeoff lower bounds
to cumulative memory lower bounds in a way that depends solely on the bound on

138

the lengths of blocks as a function h0 of the target space bound (cf. Lemma 4.22).
For many classes of bounding functions we are able to bound the loss by a constant
factor, and we are able to show that it is always at most an O(log n) factor loss. If this
bounding function h0 is non-constant, we also need to bound the optimum way for the
algorithm to allocate its space budget for producing the required outputs throughout
its computation. This optimization again depends on the bounding function h0. This
involves minimizing a convex function based on h0 subject to a mix of convex and
concave constraints, which is not generally tractable. However, assuming that h0 is
nicely behaved, we are able to apply specialized convexity arguments (cf. Lemma 4.25)
which let us derive strong lower bounds on cumulative memory complexity.

Road map We give the overall definitions in Section 4.2, including a review of the
standard definitions of the work space used by quantum circuits. Section 4.3 gives a
random oracle separation between the time-space product and cumulative memory.
Section 4.4 is stand-alone section containing a simpler explicit cumulative memory
lower bound for classical sorting algorithms that do not rely on our general theorems.
In Section 4.5, we give our lower bound for quantum sorting algorithms which gives
a taste of the issues involved for our general theorems. In Section 4.6, we give the
general theorems that let us convert the Borodin-Cook-Abrahamson paradigm for
multi-output functions to cumulative memory lower bounds for classical randomized
algorithms; that section also contains the corresponding theorems for quantum lower
bounds. Section 4.7 applies our general theorems from Section 4.6 to lower bound the
cumulative memory complexity for some concrete problems.

4.2 Preliminaries

Cumulative memory is an abstract notion of time-space complexity that can be
applied to any model of computation with a natural notion of space. Here we will use
branching programs and quantum circuits as concrete models, although our results

139

generalize to any reasonable model of computation.

Branching programs Branching programs with input {x1, . . . , xn} ∈ Dn are known
as D-way branching programs and are defined using a rooted DAG in which each
non-sink vertex is labeled with an i ∈ [n] and has |D| outgoing edges that correspond
to possible values of xi. Each edge is optionally labeled by some number of output
statements expressed as pairs (j, oj) where j ∈ [m] is an output index and oj ∈ R

(if outputs are to be ordered) or simply oj ∈ R (if outputs are to be unordered).
Evaluation starts at the root v0 and follows the appropriate labels of the respective
xi. We consider branching programs P that contain T + 1 layers where the outgoing
edges from nodes in each layer t are all in layer t+ 1. We impose no restriction on
the query pattern of the branching program or when it can produce parts of the
output. Such a branching program P has the following complexity measures: The
time of the branching program is T (P) = T . The space of the branching program is
S(P) = maxt log2∥Lt∥ where Lt is the set of nodes in layer t. Observe that in the
absence of any limit on its space, a branching program could equally well be a decision
tree; hence the minimum time for branching programs to compute a function f is its
decision tree complexity. The time-space (product) used by the branching program
is TS(P) = T (P)S(P). The cumulative memory used by the branching program is
CM(P) = ∑

t log2 |Lt|.

Branching programs are very general and simultaneously model time and space
for sequential computation. In particular, they model time and space for random-access
off-line multi-tape Turing machines and random-access machines (RAMs) when time
is unit-cost, space is log-cost, and the input and output are read-only and write-only
respectively1. Branching programs are much more flexible than these models since

1In prior work, branching program space has often been defined to be the logarithm of the total
number of nodes (e.g., (Borodin and Cook, 1982; Abrahamson, 1991)) rather than the logarithm of
the width (maximum number of nodes per layer), though the latter has been used (e.g., (Chandra
et al., 1983)). The natural conversion from an arbitrary space-bounded machine to a branching

140

they can make arbitrary changes to their storage in a single step.

Quantum Circuits We also consider quantum circuits C with classical read-only
inputs X = x1, . . . , xn. We use the same model of quantum circuits presented in
Section 3.2.1. As a quick refresher, this is the standard quantum query model where
arbitrary input-independent unitaries can be applied between quantum queries to the
input. The quantum circuit is broken down into layers composed of a query to the
input, an input-independent unitary, and an optional measurement on any subset of
the qubits. The ‘space’ of a layer is the number of qubits sent from that layer to the
next one.

4.3 A gap between time-space product and cumulative mem-
ory

Here we discuss how the irreversible pebble game can be used to prove a separa-
tion between time-space product and cumulative memory complexity for computation.

Irreversible pebbling separation

We would like to remind the reader of the irreversible pebbling game introduced
in Chapter 2.

Definition 2.2. The irreversible pebble game is a one player game on a DAG
G = (V,E) where the goal is to place a pebble on exactly the nodes T ⊆ V called targets
with out-degree zero. A pebbling (strategy) is a list of subsets of V . P = [P0, . . . ,Pτ]
where P0 = ∅ and Pτ = T . A strategy is valid as long as

program produces one that is not leveled (i.e., nodes are not segregated by time step). After leveling
the branching program, the space of the original machine becomes the logarithm of the width (cf.
(Pippenger, 1979)). The width-based definition is also the only natural one by which to measure
cumulative memory complexity and, in any case, the two definitions differ by at most the additive
log2 T we used for the Borodin-Cook bound, with lower bounds on width implying lower bounds on
size.

141

• |Pi△Pi+1| = 1, and

• If v ∈ Pi+1 \ Pi, then parents(v) ⊆ Pi.

Definition 2.3. The number of steps T (P) in a pebbling strategy P = [P0, . . . ,Pτ] is
τ .

Definition 2.4. The number of pebbles S(P) in a pebbling strategy P = [P0, . . . ,Pτ]
is maxi∈[τ] |Pi|.

Similarly, we can define the cumulative memory cost of a pebbling strategy.

Definition 4.3. The cumulative memory CM(P) of pebbling strategy P = [P0, . . . ,Pτ]
is ∑t∈[τ] |Pt|.

We will be considering instances of the black pebble game where T contains
exactly the unique node with out-degree zero. Intuitively, the black pebble game
corresponds to strategies for evaluating straight line programs, where a pebble indicates
that a particular value has been computed and is currently stored in memory. The
number of pebbles used when pebbling a graph is analogous to the space used by that
computation. We will construct a simple DAG where the time-space complexity is
larger than the cumulative memory complexity.

Proposition 4.4. There is a family of DAGs {Gi}i∈N such that graph Gn requires
Ω(n1/3) pebbles and Ω(n) steps to pebble but Gn can be pebbled with cumulative memory
Ω(n).

This gives an Ω(n1/3) separation between the time-space product and cumulative
memory for pebbling.

Proof. We construct Gn, as shown in Figure 4.1, to contain an n1/3 × n1/3 square
lattice whose node of out-degree zero now has an out-going edge to the head of a chain
containing n nodes. Pebbling the n1/3 × n1/3 lattice requires pebbling a pyramid of

142

Figure 4.1: A DAG defined by parameter n. It is formed by joining an n1/3 × n1/3

lattice to a chain of length n.

height n1/3, so Theorem 5 of (Cook, 1973) tells us that Ω(n1/3) pebbles are necessary
to place a pebble at the end of the lattice. Since a pebble must be placed on each
node in the chain of length n, pebbling this graph takes at least n steps.

Now we will show how this graph can be pebbled with less cumulative memory.
Both the lattice and the chain can each be pebbled with cumulative memory that
is O(n). The lattice can be pebbled by placing n1/3 pebbles along the top diagonal
and then repeatedly moving (i.e. adding a new pebble then removing the old pebble)
these pebbles along their downward edges until they are all on the bottom diagonal.
Then all pebbles other than the one at the end of the lattice are removed. This uses
n1/3 + 1 pebbles and acts on each node at most twice for a total of O(n2/3) steps. This
strategy pebbles the lattice with a cumulative memory complexity that is only O(n).
For the chain we can simply move one pebble from the leftmost node to the rightmost
node in 2n + 1 steps. Since this process only requires two pebbles, the cumulative
memory is also O(n).

Random oracle separation

There is a group of closely related theorems from cryptography that let us
instantiate pebbling graphs with the help of a random oracle (Dwork et al., 2005;
Dziembowski et al., 2011; Karvelas and Kiayias, 2014). Here we walk through the
ideas behind these proofs to show that the graph Gn in Proposition 4.4 leads to

143

separation between time-space and cumulative memory complexities in the random
oracle model. The concrete problem we will be considering is related to labeling nodes
of the pebbling graph.

Definition 4.5. Let G = (V,E) be a DAG with maximum in-degree two and target
vt. Fix c to be some large constant. Let H : {0, 1}(2c+1)⌈log2 |V |⌉ → {0, 1}c⌈log2 |V |⌉ be a
random function. We assign each vi ∈ V a label L(vi) as follows:

• If vi has in-degree zero, then L(vi) = H(0c⌈log2 |V |⌉, 0c⌈log2 |V |⌉, i).

• If vi has exactly one parent vj, then L(vi) = H(L(vj), L(vj), i).

• If vi has two parents vj, vk where j < k, then L(vi) = H(L(vj), L(vk), i).

The hash-graph problem HH
G is the task of computing the label of vt.

We will use the notation AH to denote an algorithm A that has query access
to the random oracle (function) H. We start by proving a weaker version of a result
in (Dwork et al., 2005).

Definition 4.6 ((Dwork et al., 2005)). Let G = (V,E) be a DAG and AH be an
algorithm that solves the hash-graph problem HH

G . Then the ex post facto pebbling of
AH is defined as follows:

• Making the call H(0c⌈log2 |V |⌉, 0c⌈log2 |V |⌉, i) when vi has in-degree zero corresponds
to placing a pebble on vi.

• Making the call H(L(vj), L(vj), i) when vi’s only parent is vj corresponds to
placing a pebble on vi.

• Making the call H(L(vj), L(vk), i) when vj and vk are the parents of vi and
j < k corresponds to placing a pebble on vi.

144

• A pebble is removed as soon as it is no longer needed. This happens when either
the children of that node are never pebbled after this point or when the node is
pebbled again before any of its children are pebbled.

Analyzing ex post facto pebbling is key to the arguments in (Dwork et al.,
2005; Dziembowski et al., 2011; Karvelas and Kiayias, 2014) and lets us lower bound
the space required to compute a hash-graph.

Proposition 4.7 ((Dwork et al., 2005)). Consider an algorithm AH that operates for
a certain number of steps with s · c ⌈log2 |V |⌉ bits of memory. Then with probability at
least 1− 1/|V |c (over the choice of H) the maximum number of pebbles placed by the
ex post facto pebbling of AH is bounded above by s.

This lets us show that a hash-graph problem requires at least as much time
and space as pebbling its underlying graph, as we show below in an argument similar
to ones in (Dziembowski et al., 2011; Karvelas and Kiayias, 2014).

Proposition 4.8. Let G = (V,E) be a DAG that requires s pebbles and τ steps to
pebble. Then any algorithm AH that solves the hash-graph problem HH

G must use space
S that is larger than (s− 1) · c ⌈log2 |V |⌉ and time T that is at least τ or its success
probability (over the randomness of H) is at most 2T/|V |c−1.

Proof. For an algorithm AH with space bound S < (s− 1) · c ⌈log2 |V |⌉ to solve HH
G ,

one of the following events must happen:

1. AH solves HH
G without placing a pebble on the target during the ex post facto

pebbling.

2. AH places s pebbles during the ex post facto pebbling.

3. AH places a pebble during the ex post facto pebbling that would not be valid
according to the black pebble game.

145

Since H is a random oracle, (1) happens with probability at most 1/|V |c. By Propo-
sition 4.7 (2) happens with probability at most 1/|V |c. Since guessing a label that
has not been pebbled is possible with probability at most 1/|V |c, We know that (3)
happens with probability at most T/|V |c−1 via a union bound over the queries of AH

and the nodes of G. Thus by a union bound, the probability AH can produce the
correct output is at most (T · |V |+ 2)/|V |c which in turn is at most 2T/|V |c−1.

Now consider an algorithm AH with time bound T < τ . Since G cannot be
pebbled in this number of steps, one of the following events must happen for AH to
produce the correct output:

1. AH solves HH
G without placing a pebble on the target during the ex post facto

pebbling.

2. AH places a pebble during the ex post facto pebbling that would not be valid
according to the black pebble game.

Both of the events are the same as in the space-bounded case, and therefore a union
bound give AH a success probability of at most 2T/|V |c−1.

Any algorithm that solves HH
G must obey the space and the time bounds

imposed by pebbling that graph or spend time that is Ω(|V |c−1).2 Note that a
pebbling of a graph G directly corresponds to a strategy for computing HH

G with the
same space, time, and cumulative memory bounds as the pebbling. By using the
graph Gn from Proposition 4.4, this gives us a separation between time-space product
complexity and cumulative memory in the random oracle model.

Corollary 4.9. Relative to a random oracle H, there is a problem with an Ω(n1/3)
separation between its time-space product complexity and its cumulative memory
complexity.

2Since c is an arbitrary constant, this time bound can be made arbitrarily large.

146

While this will be hard to prove, we believe that replacing the random oracle
with a suitable hash function gives a problem where there is an asymptotic gap between
these complexity measures.

Conjecture 4.10. Instantiating the family of DAGs from Proposition 4.4 as hash-graph
problems with some concrete hash-function gives a problem with an unconditional
asymptotic gap between its sequential time-space product and cumulative memory
complexities.

4.4 Cumulative memory complexity of classical sorting algo-
rithms

For a natural number N , the standard version of sorting is a function Sortn,N :
[N]n → [N]n that on input x ∈ [N]n produces an output y ∈ [N]n in non-decreasing
order where y is a permutation of x; that is, there is some permutation π such that
yi = xπ(i) for all i ∈ [n]. A related problem is the ranking problem Rankn,N : [N]n →
[n]n which on input x ∈ [N]n produces a permutation π represented as the vector
(π(1), . . . , π(n)) such that Sortn,N(x) = (xπ(1), . . . , xπ(n)) and whenever xi = xj for
i < j we have π(i) < π(j).

Proposition 4.11 ((Borodin and Cook, 1982)). (a) If there is a [nN]-way branch-
ing program P computing Sortn,nN then there is a [N]-way branching program
P ′ computing Rankn,N with T (P ′) ≤ T (P), S(P ′) ≤ S(P), and CM(P ′) ≤
CM(P).

(b) If there is a [N]-way branching program P ′′ computing Rankn,N then there is
a [N]-way branching program P ′′′ computing Sortn,N with T (P ′′′) ≤ 2T (P ′′),
S(P ′′′) ≤ S(P ′′) + log2 N , and CM(P ′′′) ≤ 2CM(P ′′) + T (P ′′′) log2 N .

Proof. For part (a), the program P ′ is exactly P except that when P queries xi ∈

[Nn], P ′ reads x′
i ∈ [N] and branches on value xi = (x′

i, i) and when P outputs

147

(i, yi) = (i, xπ(i)) on an edge for xπ(i) = (x′
π(i), π(i)), P ′ outputs (i, π(i)). For part (b),

the program P ′′′ is exactly P ′′ except that whenever P ′′ outputs (i, π(i)) on an edge,
P ′′′ queries xπ(i) and outputs (i, xπ(i)). One layer becomes two layers and the number
of nodes per layer of P ′′′ is at most N times that of P ′′.

Following (Borodin and Cook, 1982), we focus on inputs where the xi are
distinct. In this case, the tie-breaking we enforced in defining Rankn,N when there
are equal elements is irrelevant.

Proposition 4.12 ((Borodin and Cook, 1982)). There is an α > 0 such that the
following holds. Let n be sufficiently large and µ be the uniform distribution over lists
of n distinct integers from [n2]. Then for any branching program B of height h ≤ αn

and for all integers k ≤ 2αn, the probability for x ∼ µ that B produces at least k
correct output values of Rankn,n2 on input x is at most 2−k/⌈log2 n⌉.

Theorem 4.13. Let P be a branching program computing Sortn,n3 with probability
at least n−O(1) and T = T (P). Then T is Ω(n2/ log2 n) or CM(P) is Ω(n2/ log n).
Further, any random access machine computing Sortn,n3 with n−O(1) probability requires
cumulative memory of Ω(n2/ log n) bits.

Proof. We prove the same bounds for branching programs P computing Rankn,n2

which, by Proposition 4.11, implies the bounds for computing Sortn,n3 .

For simplicity, we first assume that P is deterministic and always produces the
correct output. Let α be the constant and µ be the probability distribution on [n2]n

from Proposition 4.12, and let H =
⌊

α
2n
⌋
. We partition P into ℓ = ⌈T/H⌉ intervals

{I1, . . . , Iℓ}, each of length H except for the first which may be shorter than the rest.
Let t1 = 0, tℓ+1 = T , and for i ∈ [2, ℓ], ti be the time-step in Ii with the fewest number
of nodes. We define Si = log2(∥Lti

∥) where Lj is the set of nodes of P in layer j. The
i-th time block Bi will contain all layers from ti to ti+1. We observe:

CM(P) ≥
ℓ∑

i=2
Si H = H

ℓ∑
i=1

Si (4.1)

148

since S1 = 0 and our choice of ti guarantees that for i ∈ [2, ℓ], P can be decomposed
into disjoint blocks of H layers that each have at least 2Si nodes per layer. Define
ki = ⌈⌈log2 n⌉ (Si + log2(2T))⌉, which will be our target number of outputs for block
Bi. By our choice of Bi we know its length is at most αn while starting at a layer with
2Si nodes. So, by Proposition 4.12, combined with a union bound, the probability for
x ∼ µ that Bi produces at least ki correct output values of Rankn,n2 on input x ∼ µ

is at most 1/(2T). Thus the probability over µ that at least one block Bi produces
at least ki correct output values is at most 1/2 and the probability that the total
number of outputs produced is at most ∑ℓ

i=1(ki − 1) is at least 1/2. Since P must
always produce n correct outputs, we must have:

ℓ∑
i=1

(ki − 1) ≥ n.

Inserting the definition of ki we get:
ℓ∑

i=1
(⌈log2 n⌉ (Si + log2(2T))) ≥ n.

Using Equation (4.1) to express this in terms of CM(P) gives us:

CM(P)/H + ℓ log2(2T) ≥ n

⌈log2 n⌉

or

CM(P) + T log2(2T) ≥
n
⌊

α
2n
⌋

⌈log2 n⌉
≥ αn2

3 log2 n
.

Thus at least one of T log2(2T) or CM(P) is at least αn2/(6 log2 n), as required, since
log T is O(log n) wlog. The bound for random-access machines comes from observing
that such a machine requires at least one memory cell of Ω(log T) bits at every time
step.

To prove the bound for algorithms with success probability n−c, we multiply
log2(2T) in the above argument by (c + 1). Since any sorting algorithm must have
T ≥ n, on randomly chosen inputs the probability that it produces at least ∑ℓ

i=1(ki−1)
correct outputs becomes at most 1

2nc <
1

nc and hence the above bounds (reduced by

149

the constant factor c+ 1) apply to deterministic algorithms with success probability
1/nc for inputs from the uniform distribution over lists of n distinct integers from [n2].
By Yao’s lemma this implies the same lower bound for randomized algorithms with
success probability at most n−c.

Theorem 4.13 applies to cumulative working memory of any algorithm that
produces its sorted output in a write-only output vector and can compute those values
in arbitrary time order. If the algorithm is constrained to produce its sorted output
in the natural time order then, following (Beame, 1991), one can obtain a slightly
stronger bound.

Theorem 4.14. Any branching program P computing the outputs of Sortn,n in order
in time T and probability at least 4/5 requires T to be Ω(n2/ log n) or CM(P) to
be Ω(n2). Further, any random access machine computing Sortn,n in order with
probability at least 4/5 requires cumulative memory Ω(n2).

Proof Sketch. Any such algorithm can easily determine all the elements of the input
that occur uniquely, and the lower bounds follow from the bounds on Unique Elements
that we prove in Section 4.7.

4.5 Quantum cumulative memory complexity of sorting

As an illustrative example, we first show that the quantum cumulative memory
complexity of sorting is Ω(n3/T), matching the TS complexity bounds given in (Klauck
et al., 2007; Hamoudi and Magniez, 2021). This involves the quantum circuit model
which, as we have noted, produces each output position at a predetermined input-
independent layer. We restrict our attention to circuits that output all elements in
the input in some fixed rank order. While our proof is inspired by the time-space
lower bound of (Klauck et al., 2007), it can be easily adapted to follow the proof
in (Hamoudi and Magniez, 2021) instead. We start by constructing a probabilistic
reduction from the k-threshold problem to sorting.

150

Definition 4.15. In the k-threshold problem we receive an input X = x1, . . . , xn

where xi ∈ {0, 1}. We want to accept iff there are at least k distinct values for i where
xi = 1.

Proposition 4.16 (Theorem 13 in (Klauck et al., 2007)). For every γ > 0 there is
an α > 0 such that any quantum k-threshold circuit with at most T ≤ α

√
kn queries

and with perfect soundness must have completeness σ ≤ e−γk on inputs with Hamming
weight k.

Lemma 4.17. Let γ > 0. Let n be sufficiently large and C(X) be a quantum circuit
with input X = x1, . . . , xn. There is a β < 1 depending only on γ such that for all
k ≤ β2n and R ⊆ {n/2 + 1, . . . , n} where ∥R∥ = k, if C(X) makes at most β

√
kn

queries, then the probability that C(X) can correctly output all k pairs (xi, rj) where
rj ∈ R and xi is the rj-th smallest element of X is at most e(1−γ)k−1. If R is a
contiguous set of integers, then the probability is at most e−γk.

A version of this lemma was first proved in (Klauck et al., 2007) with the
additional assumption that the set of output ranks R is a contiguous set of integers;
this was sufficient to show that any quantum circuit that produces its sorted output in
sorted time order requires that T 2S is Ω(n3). The authors stated that their proof can
be generalized to any fixed rank ordering, but the generalization is not obvious. We
generalize their lemma to non-contiguous R, which is sufficient to obtain an Ω(n3/T)
lower bound on the cumulative complexity of sorting independent of the time order in
which the sorted output is produced.

Proof of Lemma 4.17. Choose α as the constant for γ in Proposition 4.16 and let
β =
√

2α/6. Let C be a circuit with at most β
√
kn layers that outputs the k correct

pairs (xi, rj) with probability p. Let R = {r1, . . . rk} where r1 < r2 < . . . < rk. We
describe our construction of a circuit C′(X) solving the k-threshold problem on inputs
X = x1, . . . , xn/2 with exactly k ones in terms of a function f : [n/2] → R. Given
f , we re-interpret the input as follows: we replace each xi with x′

i = f(i)xi, add k

151

dummy values of 0, and add one dummy value of j for each j ∈ {n/2 + 1, . . . , n} \R.
Doing this gives us an input X ′ = x′

1, . . . , x
′
n that has n/2 zeroes.

If we assume that f is 1-1 on the k ones of X, then the image of the ones of X
will be R and there will be precisely one element of X ′ for each j ∈ {n/2 + 1, . . . , n}.
Therefore the element of rank j > n/2 in X ′ will have value j, and hence the rank
r1, . . . , rk elements of X ′ will be the images of precisely those elements of X with
xi = 1.

To obtain perfect soundness, we cannot rely on the output of C(X ′) and must
be able to check that each of the output ranks was truly mapped to by a distinct
one of X. For each element xi of X we simply append its index i as log2 n low order
bits to its image x′

i and append an all-zero bit-vector of length log2 n to each dummy
value to obtain input X ′′. Doing so will not change the ranks of the elements in X ′,
but will allow recovery of the k indices that should be the ones in X. In particular,
circuit C′(X) will run C(X ′′) and then for each output x′′

j with low order bits i, C′(X)
will query xi, accepting if and only if all of those xi = 1. More precisely, since the
mapping from each xi to the corresponding x′′

i is only a function of f , xi, and i, as
long as C′(X) has an explicit representation of f , it can simulate each query of C(X ′′)
with two oracle queries to X. Since C′ has at most

2β
√
kn+ k ≤ 3β

√
kn ≤ α

√
kn/2

layers, by Proposition 4.16, it can only accept with probability ≤ e−γk on inputs with
k ones.

We now observe that for each fixed X with exactly k ones, for a randomly
chosen function f : [n/2] → R, the probability that f is 1-1 on the ones of X ′ is
exactly k!/kk ≥ e1−k. Therefore C′(X) will give the indices of the k ones in X with
probability3 at least p · e1−k. However, this probability must be at most e−γk, so we

3Note that though this is exponentially small in k it is still sufficiently large compared to the
completeness required in the lower bound for the k-threshold problem.

152

can conclude that p ≤ e(1−γ)k−1. In the event that R is a contiguous set of integers,
observe that any choice for the function f will make X ′′ have the ones of X become
ranks r1, . . . , rk. So the probability of finding the ones is at least p ≤ e−γk.

By setting k and γ appropriately, Lemma 4.17 gives a useful upper bound on
the number of fixed ranks successfully output by any β

√
Sn query quantum circuit

that has access to S qubits of input dependent initial state. To handle input-dependent
initial state, we will need to use the following proposition from our Chapter 3.

Proposition 3.5 ((Aaronson, 2005)). Let C be a quantum circuit, ρ be an S-qubit
(possibly mixed) state, and πmix be the S-qubit maximally mixed state. If C starting in
initial state ρ produces some output z with probability p, then C starting in state πmix

will produce z with probability q which is at least p/2S.

This allows us to bound the overall progress made by any short quantum
circuit.

Lemma 4.18. There is a constant β > 0 such that, for any fixed set of S ≤ β2n

ranks that are greater than n/2, the probability that any quantum circuit C with at
most β

√
Sn queries and S qubits of input-dependent initial state correctly produces

the outputs for these S ranks is at most 1/e.

Proof. Choose β as the constant when γ is 1 + ln(4) in Lemma 4.17. Applying
Proposition 3.5 to the bound in Lemma 4.17 gives us that a quantum circuit with S

qubits of input-dependent state can produce a fixed set of k ≤ β2n outputs larger than
median with a probability at most 22Se(1−γ)k−1. Since γ = 1 + ln(4) setting k = S

gives that this probability is ≤ 1/e.

Theorem 4.19. When n is sufficiently large, any quantum circuit C for sorting a list
of length n with success probability at least 1/e and at most T layers that produces its
sorted outputs in any fixed time order requires cumulative memory that is Ω(n3/T).

153

Figure 4.2: How we define the block Ci that ends at layer Lti
. The red line is a plot of

C’s space over time. The gray layers are the ones used to lower bound the cumulative
memory complexity of Ci, as each of these layers uses at least 4k∗(ti)−1 qubits and the
length of this interval is β

2 2k∗(ti)−1√n.

Proof. We partition C into blocks with large cumulative memory that can only produce
a small number of outputs. We achieve this by starting at last unpartitioned layer
and finding a suitably low space layer before it so that we can apply Lemma 4.18 to
upper bound the number of correct outputs that can be produced in that block with a
success probability of at least 1/e. Let β be the constant from Lemma 4.18 and k∗(t)
be the least non-negative integer value of k such that the interval:

I(k, t) =
[
t− β

2 (2k+1 − 1)
√
n, t− β

2 (2k − 1)
√
n

]

contains some t′ such that St′ ≤ 4k − 1. We recursively define our blocks as follows.
Let ℓ be the number of blocks generated by this method. The final block Cℓ starts
with the first layer tℓ−1 ∈ I(k∗(T), T) where Stℓ−1 ≤ 4k∗(T) − 1 and ends with layer
tℓ = T . Let ti be the first layer of block Ci+1. Then the block Ci starts with the first
layer ti−1 ∈ I(k∗(ti), ti) where Sti−1 ≤ 4k∗(ti)−1 and ends with ti. See Figure 4.2 for an
illustration of our partitioning. Since S0 = 0 we know that k∗(t) ≤ log(T). Likewise
since St > 0 when t > 0, for all t > β

2
√
n we know that 0 < k∗(t) ≤ log(T).

Block Ci starts with less than 4k∗(ti) qubits of initial state and has length
at most β2k∗(ti)√n; so by Lemma 4.18, if 4k∗(ti) ≤ β2n, the block Ci can output at
most 4k∗(ti) inputs with failure probability at most 1/e. Additionally Ci has at least

154

β
2 2k∗(ti)−1√n layers so

ℓ∑
i=1

β

4 2k∗(ti)√n ≤ T (4.2)

and each of these layers has at least 4k∗(ti)−1 qubits4, so the cumulative memory of Ci

is at least β
2 23k∗(ti)−3√n so

CM(C) ≥
ℓ∑

i=1

β

2 23k∗(ti)−3√n. (4.3)

We now have two possibilities: If we have some i such that 4k∗(ti) > β2n, the cumulative
memory of Ci alone is at least β4n2/16 which is Ω(n2) and hence C has cumulatively
memory Ω(n3/T) since T ≥ n. Otherwise, since we require that the algorithm is
correct with probability at least 1/e, each block Ci can produce at most 4k∗(ti) outputs.
Since our circuit must output all n/2 elements larger than the median, we know∑ℓ

i=1 4k∗(ti) ≥ n/2. For convenience we define wi = 2k∗(ti) which allows us to express
the constraints as

CM(C) ≥ β

16
√
n

ℓ∑
i=1

w3
i and β

4
√
n

ℓ∑
i=1

wi ≤ T and
ℓ∑

i=1
w2

i ≥ n/2. (4.4)

Minimizing ∑ℓ
i=1 w

3
i is a non-convex optimization problem and can instead be solved

using

Minimize
ℓ∑

i=1
x3

i subject to
ℓ∑

i=1
x2

i ≥ ξ and
ℓ∑

i=1
xi ≤ ξ and ∀i, xi ≥ 0, (4.5)

for xi = 8T
βn3/2wi and ξ = 32T 2

β2n2 . Lemma G.3 in the Appendix shows that for non-
negative xi with ∑xi ≤

∑
x2

i , we have ∑x2
i ≤

∑
x3

i . Thus ∑x3
i ≥ ξ and applying the

variable substitution gives us:
ℓ∑

i=1
w3

i ≥
βn5/2

16T . Plugging this into Equation (4.4) gives

us the bound: CM(C) ≥ β2n3

256T and hence the cumulative memory of C is Ω(n3/T).

4This may not hold for C1 with length less than β
2
√

N , but Lemma 4.17 gives us that this number
of layers is insufficient to find a fixed rank input with probability at least 1/e. Thus we can omit
such a block from our analysis.

155

In Section G.0 we also show how we can change the length of the blocks to
generalize the above proof to arbitrary success probabilities.

When n is sufficiently large, any quantum circuit C for sorting a list of length
n with failure probability at most δ and at most T layers that produces its sorted
outputs in any fixed time order requires cumulative memory that is Ω((1−δ)n3/T).

4.6 General methods for proving cumulative memory lower
bounds

Our method involves adapting techniques previously used to prove tradeoff
lower bounds on worst-case time and worst-case space. We show that the same
properties that yield lower bounds on the product of time and space in the worst case
can also be used to produce nearly identical lower bounds on cumulative memory. To
do so, we first revisit the standard approach to such time-space tradeoff lower bounds.

The standard method for time-space tradeoff lower bounds for multi-output
functions

Consider a multi-output function f on Dn where the output f(x) is either
unordered (the output is simply a set of elements from R) or ordered (the output is
a vector of elements from R). Then |f(x)| is either the size of the set or the length
of the vector of elements. The standard method for obtaining ordinary time-space
tradeoff lower bounds for multi-output functions on D-way branching programs is the
following:

The part that depends on f : Choose a suitable probability distribution µ on Dn,
often simply the uniform distribution on Dn and then:

(A) Prove that Prx∼µ[|f(x)| ≥ m] ≥ α.

(B) Prove that for all k ≤ m′ and any branching program B of height ≤ h′(k, n),

156

the probability for x ∼ µ that B produces at least k correct output values of f
on input x is at most C ·K−k for some m′, h′, K = K(R, n), and constant C
independent of n.

Observe that under any distribution µ, a branching program with ordered outputs
that makes no queries can produce k outputs that are all correct with probability at
least |R|−k, so the bound in (B) shows that, roughly, up to the difference between K

and |R| there is not much gained by using a branching program of height h.

The generic completion: In the following outline we omit integer rounding for
readability.

• Let S ′ = S + log2 T and suppose that

S ′ ≤ m′ log2 K − log2(2C/α). (4.6)

• Let k = [S ′ + log2(2C/α)]/ log2 K, which is at most m′ by hypothesis on S ′, and
define h(S ′, n) = h′(k, n).

• Divide time T into ℓ = T/h blocks of length h = h(S ′, n).

• The original branching program can be split into at most T · 2S = 2S′ sub-
branching programs of height ≤ h, each beginning at a boundary node between
layers. By Property (B) and a union bound, for x ∼ µ the probability that at
least one of these ≤ 2S′ sub-branching programs of height at most h produces k
correct outputs on input x is at most 2S′ · C ·K−k ≤ α/2 by our choice of k.

• Under distribution µ, by (A), with probability at least α, an input x ∼ µ has
some block of time where at least m/ℓ = m · h(S ′, n)/T outputs of f must be
produced on input x.

157

• If m · h(S ′, n)/T ≤ k, this can occur for at most an α/2 fraction of inputs under
µ. Therefore we have m · h(S ′, n)/T > k = [S ′ + log2(2C/α)]/ log2 K and hence
since h(S ′, n) ≥ h(S, n), combining with Equation (4.6), we have

T · (S + log2 T) = T · S ′ ≥ min (m h(S, n), m′ n′) log2 K − log2(C/α) · T

where n′ ≤ n is the decision tree complexity of f and hence a lower bound on T .

Remark 4.1. Though it will not impact our argument, for many instances of the above
outline, the proof of Property (B) is shown for a decision tree of the same height
by proving an analog for the conditional probability along each path in the decision
tree separately; this will apply to the tree as a whole since the paths are followed by
disjoint inputs, so Property (B) follows from the alternative property below:

(B’) For any partial assignment τ of k ≤ m′ output values over R and any restriction
(i.e., partial assignment) π of h′(k, n) coordinates within Dn,

Pr
x∼µ

[f(x) is consistent with τ | x is consistent with π] ≤ C ·K−k.

Observe that Property (B’) is only a slightly more general version of Property (*)
from the introduction where C = 1, m′ is arbitrary, and h′ is used instead of h.

Remark 4.2. The above method still gives lower bounds for many multi-output functions
g : DN → RM that have individual output values that are easy to compute or large
portions of the input space on which they are easy to compute. The bounds follow by
applying the method to some subfunction f of g given by f(x) = ΠO(g(x, π)) where π
is a partial assignment to the input coordinates and ΠO is a projection onto a subset
O of output coordinates. In the subsequent discussions we ignore this issue, but the
idea can be applied to all of our lower bound methods.

A general extension to cumulative memory bounds

To give a feel for the basic ideas of the method, we first show this for a simple
case. Observe that, other than the separate bound on time, the lower bound on

158

Figure 4.3: Our generic method for choosing blocks when h(k, n) = h(n). The area
marked in gray corresponds to the cumulative memory lower bound we obtain.

cumulative memory usage we prove in this case is asymptotically identical to the
bound achieved for the product of time and worst-case space using the standard
outline.

Theorem 4.20. Let c > 0. Suppose that properties (A) and (B) apply for h′(k, n) =
h(n), m′ = m, and α = C = 1. If T log2 T ≤

m h(n) log2 K
6(c+1) then the cumulative memory

used in computing f : Dn → Rm in time T with success probability at least T−c is at
least 1

6 m h(n) log2 K.

Proof. Fix a deterministic branching program P of length T computing f . Rather
than choosing fixed blocks of height h = h(n), layers of nodes at a fixed distance from
each other, and a fixed target of k outputs per block, we choose the block boundaries
depending on the properties of P and the target k depending on the property of the
boundary layer chosen.

Let H = ⌊h(n)/2⌋. We break P into ℓ = ⌈T/H⌉ time segments of length H

working backwards from step T so that the first segment may be shorter than the
rest. We let t1 = 0 and for 1 < i ≤ ℓ we let ti = arg min{ |Lt| : T − (ℓ− i+ 1) ·H ≤
t < T − (ℓ − i) · H } be the time step with the fewest nodes among all time steps
t ∈ [T − (ℓ− i+ 1) ·H,T − (ℓ− i) ·H).

The i-th time block of P will be between times ti and ti+1. Observe that
by construction |ti+1 − ti| ≤ h(n), so each block has length at most h(n). This

159

construction is shown in Figure 4.3. Set Si = log2 |Lti
| so that Lti

has at 2Si nodes.
By definition of each ti, the cumulative memory used by P ,

CM(P) ≥
ℓ∑

i=1
Si ·H. (4.7)

(Note that since S1 = 0, it does not matter that the first segment is shorter than the
rest5.)

We now define the target ki for the number of output values produced in each
time block to be the smallest integer such that K−ki ≤ 2−Si/T c+1. That is,

ki = ⌈(Si + (c+ 1) log2 T)/ log2 K⌉.

For x ∼ µ, for each i ∈ [ℓ] and each sub-branching program B rooted at some node in
Lti

and extending until time ti+1, by our choice of ki and Property (B), if ki ≤ m, the
probability that B produces at least ki correct outputs on input x is at most 2−Si/T c+1.
Therefore, by a union bound, for x ∼ µ the probability that P produces at least ki

correct outputs in the i-th time block on input x is at most |Lti
| · 2−Si/T c+1 = 1/T c+1.

Therefore, if each ki ≤ m, the probability for x ∼ µ that there is some i such that
P produces at least ki correct outputs on input x during the i-th block is at most
ℓ/T c+1 < T c. Therefore, if each ki ≤ m, the probability for x ∼ µ that P produces at
most ∑ℓ

i=1(ki − 1) correct outputs in total on input x is > 1− 1/T c.

If each ki ≤ m, since P must produce m correct outputs on x ∈ Dn with
probability at least 1/T c, we must have ∑ℓ

i=1(ki − 1) ≥ m. On the other hand, if
some ki > m we have the same bound. Using our definition of ki we have ∑ℓ

i=1[(Si +
(c + 1) log2 T)]/ log2 K] ≥ m or ∑ℓ

i=1(Si + (c + 1) log2 T) ≥ m · log2 K. Plugging
in the bound (4.7) on the cumulative memory and the value of ℓ, it implies that
CM(P)/H + (c+ 1)⌈T/H⌉ · log2 T ≥ m · log2 K or that CM(P) + (c+ 1)T log2 T ≥

5This simplifies some calculations and is the prime reason for starting the time segment boundaries
at T rather than at 0.

160

1
3 m · h(n) · log2 K, where the 3 on the right rather than a 2 allows us to remove the
ceiling. Therefore either

T log2 T >
m · h(n) · log2 K

6(c+ 1) or CM(P) ≥ 1
6 m h(n) log2 K.

In the general version of our theorem there are a number of additional complica-
tions, most especially because the branching program height limit h(k, n) in Property
(B) can depend on k, the target for the number of outputs produced. This forces
the lengths of the blocks and the space used at the boundaries between blocks to
depend on each other in a quite delicate way. In order to discuss the impact of that
dependence and state our general theorem, we need the following definition.

Definition 4.21. Given a non-decreasing function p : R→ R with p(1) = 1, we define
p−1 : R→ R ∪ {∞} by p−1(k) = min{j | p(j) ≥ k}. We also define the loss, Lp, of p
by

Lp(n) = min
1≤k≤p(n)

∑k
j=1 p

−1(j)
k · p−1(k) .

Intuitively, Lp characterizes the smallest possible ratio between how much cu-
mulative memory we can prove a block uses versus the time-space product complexity6

of that block. This ratio depends on a function p — which is h0 in our use case —
indicating how the length of a block should scale with its initial space. Choices of
p that make Lp large indicate that our techniques are able to recover most of the
time-space product cost as cumulative memory costs while choices of p that make Lp

small indicate a regime where our analysis may not be tight. Nevertheless, with some
mild assumptions on p, we are able to give strong bounds on Lp, showing that the
loss is never too large.

Lemma 4.22. The following hold for every non-decreasing function p : R→ R with
p(1) = 1:

6Technically the product of time and initial space, which is what matters for determining the
amount of produced output.

161

(a) 1/p(n) ≤ Lp(n) ≤ 1.

(b) If p is a polynomial function p(s) = s1/c then Lp(n) > 1/2c+1.

(c) For any c > 1, Lp(n) ≥ min
1≤s≤n

p(s)− p(s/c)
cp(s) .

(d) We say that p is nice if it is differentiable and there is an integer c > 1 such that
for all x, p′(cx) ≥ p′(x)/c. If p is nice then Lp(n) is Ω(1/ log2 n). This is tight
for p with p(s) = 1 + log2 s.

We prove these technical statements in Section G.0. Here is our full general
theorem.

Theorem 4.23. Let c > 0. Suppose that function f defined on Dn has properties (A)
and (B) with α that is 1/nO(1) and m′ that is ω(log2 n). For s > 0, define h(s, n) to
be h′(k, n) for k = s/ log2 K. Suppose that h(s, n) = h0(s)h1(n) with h0(1) = 1 and
h0 is constant or a differentiable function such that s/h0(s) is increasing and concave.
Define S∗ = S∗(T, n) by

S∗

h0(S∗) = m h1(n) log2 K

6T .

(a) Either
T log2(2CT c+1/α) > 1

6 m h1(n) log2 K,

which implies that T is Ω(m h1(n) log K
log n

), or the cumulative memory used by
a randomized branching program in computing f in time T with error ε ≤

α(1− 1/(2T c)) is at least

1
6 Lh0(n log2 |D|) ·min (m h(S∗(T, n), n), 3m′ h′(m′/2, n)) · log2 K.

(b) Further any randomized random-access machine computing f in time T with
error ε ≤ α(1− 1/(2T c)) requires cumulative memory

Ω (Lh0(n log2 |D|) ·min (m h(S∗(T, n), n), m′ h′(m′/2, n)) · log2 K) .

162

Before we give the proof of the theorem, we note that by Lemma 4.22, in
the case that h0 is constant or h0(s) = s∆ for some constant ∆ > 0, which together
account for all existing applications we are aware of, the function Lh0 is lower bounded
by a constant. In the latter case, h0 is differentiable, has h0(s) = 1, and the function
s/h0(s) = s1−∆ is increasing and concave so it satisfies the conditions of our theorem.
By using α = 1, m′ = m, and C = 1 with h from Property (*) in place of h′ in
Property (B’), Theorem 4.23 yields Theorem 4.2.

More generally, the value S∗ in the statement of this theorem is at least a
constant factor times the value of S used in the generic time-space tradeoff lower
bound methodology. Therefore, for example, the cumulative memory lower bound
derived for random-access machines via Theorem 4.23 is close to the lower bound on
the product of time and worst-case space given by standard methods.

Proof of Theorem 4.23. We prove both (a) and (b) directly for branching programs,
which can model random-access machines, and will describe the small variation that
occurs in the case that the branching program in question comes from a random-access
machine. To prove these properties for randomized branching programs, by Yao’s
Lemma (Yao, 1977) it suffices to prove the properties for deterministic branching
programs that have error at most ε under distribution µ. Fix a (deterministic)
branching program P of length T computing f with error at most ε under distribution
µ. Without loss of generality, P has maximum space usage at most Smax = n log2 |D|

space since there are at most |Dn| inputs.

Let H = ⌊h1(n)/2⌋. We break P into ℓ = ⌈T/H⌉ time segments of length H

working backwards from step T so that the first segment may be shorter than the
rest. We then choose a sequence of candidates for the time steps in which to begin
new blocks, as follows: We let τ1 = 0 and for 1 < i ≤ ℓ we let

τi = arg min{ |Lt| : T − (ℓ− i+ 1) ·H ≤ t < T − (ℓ− i) ·H }

163

be the time step with the fewest nodes among all time steps t ∈ [T − (ℓ − i + 1) ·
H,T − (ℓ − i) · H). Set σi = log2 |Lτi

| so that Lτi
has at 2σi nodes. This segment

contributes at least σi ·H to the cumulative memory bound of P .

To choose the beginning ti∗ of the last time block7. We find the smallest k such
that h0(σℓ−k+1) < k. Such a k must exist since h0 is a non-decreasing non-negative
function, h0(1) = 1 and σ1 = 0 < 1. We now observe that the length of the last block
is at most k · H which by choice of k is less than h(σℓ−k+1, n) and hence we have
satisfied the requirements for Property (B) to apply at each starting node of the last
time block.

By our choice of each τi, the cumulative memory used in the last k segments
is at least ∑k

j=1 σℓ+1−j · H. Further, since k was chosen as smallest with the above
property, we know that for every j ∈ [k − 1] we have h0(σℓ−j+1) ≥ j Hence we have
σℓ−j+1 ≥ h−1

0 (j), and we get a cumulative memory bound for the last k segments of
at least

(σℓ−k+1 +
k−1∑
j=1

h−1
0 (j)) ·H. (4.8)

Claim 4.24. σℓ−k+1 +∑k−1
j=1 h

−1
0 (j) ≥ Lh0(Smax) · σℓ−k+1 · k.

Proof of Claim. Observe that it suffices to prove the claim when we replace σℓ−k+1,
which appears on both sides, by a larger quantity. In particular, we show how to prove
the claim with h−1

0 (k) instead, which is larger since h0(σℓ−k+1) < k. But this follows
immediately since by definition Lh0(Smax) ≤

∑k

j=1 h−1
0 (j)

k·h−1
0 (k) , which is equivalent to what

we want to prove.

Write Si∗ = σℓ−k+1. By the claim, the cumulative memory contribution
associated with the last block beginning at ti∗ is at least Lh0(Smax) · Si∗ · h0(Si∗)H.

7Since we are working backwards from the end of the branching program, and we do not know
how many segments are included in each block, we don’t actually know this index until things stop
with t1 = 0

164

We repeat this in turn to find the time step for the beginning of the next block
from the end, ti∗−1. One small difference now is that there is a last partial segment of
height at most H from the beginning of segment containing ti∗ to layer ti∗ . However,
this only adds at most h1(n)/2 to the length of the segment which still remains well
within the height bound of h(Si∗−1, n) = h0(Si∗−1)h1(n) for Property (B) to apply.

Repeating this back to the beginning of the branching program we obtain
a decomposition of the branching program into some number i∗ of blocks, the i-
th block beginning at time step ti with 2Si nodes, height between h0(Si)H and
h0(Si)H +H ≤ 2h0(Si)H, and with an associated cumulative memory contribution in
the i-th block of ≥ Lh0(Smax) · Si · h0(Si)H. (This is correct even for the partial block
starting at time t1 = 0 since S1 = 0.) Since we know that i∗ ≤ ℓ, for convenience, we
also define Si = 0 for i∗ + 1 ≤ i ≤ ℓ. Then, by definition

CM(P) ≥ Lh0(Smax) ·
(

i∗∑
i=1

Si · h0(Si)
)
·H = Lh0(Smax) ·

(
ℓ∑

i=1
Si · h0(Si)

)
(4.9)

and
ℓ∑

i=1
h0(Si) ≤ T/H. (4.10)

As in the previous argument for the simple case, for i ≤ i∗, we define the target
ki for the number of output values produced in each time block to be the smallest integer
such that C ·K−ki ≤ 2−Siα/(2T c+1). That is, ki = ⌈(Si + log2(2CT c+1/α))/ log2 K⌉.

If ki > m′ for some i, then Si ≥ m′ · log2 K − log2(2CT c+1/α) ≥ (m′ log2 K)/2
since m′ is ω(log n) and 1/α and T are nO(1). Therefore h0(Si) ≥ h′(m′/2, n) and
hence

CM(P) ≥ 1
2 Lh0(Smax) ·m′ · h′(m′/2, n) · log2 K

Suppose instead that ki ≤ m′ for all i ≤ i∗. Then, for x ∼ µ, for each i ∈ [i∗]
and each sub-branching program B rooted at some node in Lti

and extending until
time ti+1, by our choice of ki and Property (B), the probability that B produces at
least ki correct outputs on input x is at most α · 2−Si/(2T c+1). Therefore, by a union

165

bound, for x ∼ µ the probability that P produces at least ki correct outputs in the
i-th time block on input x is at most

|Lti
| · α · 2−Si/(2T c+1) = α/(2T c+1)

and hence the probability for x ∼ µ that there is some i such that P produces at least
ki correct outputs on input x during the i-th block is at most ℓ ·α/(2T c+1) < α/(2T c).
Therefore, the probability for x ∼ µ that P produces at most ∑ℓ

i=1(ki − 1) correct
outputs in total on input x is > 1− α/(2T c).

Since, by Property (A) and the maximum error it allows, P must produce at
least m correct outputs with probability at least α−ε ≥ α−α(1−1/(2T c)) = α/(2T c)
for x ∼ µ, we must have ∑i∗

i=1(ki − 1) ≥ m. Using our definition of ki we obtain

i∗∑
i=1

(Si + log2(2CT c+1/α)) ≥ m log2 K.

This is the one place in the proof where there is a distinction between an
arbitrary branching program and one that comes from a random access machine.

We first start with the case of arbitrary branching programs: Note that i∗ ≤
ℓ = ⌈T/H⌉ = ⌈T/⌊h1(n)/2⌋⌉. Suppose that T log2(2CT c+1/α) ≤ 1

6 m · h1(n) · log2 K.
Then, even with rounding, we obtain ∑i∗

i=1 Si ≥ 1
2 m log2 K.

Unlike an arbitrary branching program that may do non-trivial computation
with sub-logarithmic Si, a random-access machine with even one register requires
at least log2 n bits of memory (just to index the input for example) and hence
Si + log2(2CT c+1/α) will be O(Si), since T is at most polynomial in n without loss of
generality and 1/α is at most polynomial in n by assumption. Therefore we obtain
that ∑i∗

i=1 Si is Ω(m log2 K) without the assumption on T .

In the remainder we continue the argument for the case of arbitrary branching
programs and track the constants involved. The same argument obviously applies for
programs coming from random-access machines with slightly different constants that

166

we will not track. In particular, since Si = 0 for i > i∗ we have

ℓ∑
i=1

Si ≥
1
2 m · log2 K. (4.11)

From this point we need to do something different from the argument in the
simple case because the lower bound on the total cumulative memory contribution
is given by Equation (4.9) and is not simply ∑ℓ

i=1 Si · H. Instead, we combine
Equation (4.11) and Equation (4.10) using the following technical lemma that we
prove in Section G.0.

Lemma 4.25. Let p : R≥0 → R≥0 be a differentiable function such that q(x) = x/p(x)
is a concave increasing function of x. For x1, x2, . . . ∈ R≥0, if ∑i xi ≥ K and∑

i p(xi) ≤ L then ∑
i xip(xi) ≥ q−1(K/L) · L.

In our application of Lemma 4.25, p = h0, K = 1
2 m · log2 K, and L = T/H.

Let S∗ be the solution to S∗

h0(S∗) = K/L = m·H·log2 K
2T

≥ m·h1(n) log2 K
6T

. Then Lemma 4.25
implies that ∑ℓ

i=1 Si · h0(Si) ≥ S∗ · T/H = 1
2 ,m · h0(S∗) · log2 K. and hence

CM(P) ≥ Lh0(Smax) · 1
2 m · h0(S∗) ·H · log2 K ≥

1
6 Lh0(Smax) ·m · h(S∗, n) · log2 K

since H = ⌊h1(n)/2⌋ and h(S∗, n) = h0(S∗) · h1(n).

In the special case that h0(s) = s∆ (and indeed for any nice function h0), there
is an alternative variant of the above in which one breaks up time into exponentially
growing segments starting with time step T . We used that alternative approach in
Section 4.5.

Remark 4.3. If we restrict our attention to o(m′ logK)-space-bounded computation,
then each ki ≤ m′ and the cumulative memory bound for a branching program in
Theorem 4.23 becomes 1

6 Lh0(n log2 |D|) ·m ·h(S∗(T, n), n) · log2 K. And the bound for
RAM cumulative memory becomes Ω (Lh0(n log2 |D|) ·m · h(S∗(T, n), n) · log2 K) .

167

Generic method for quantum time-space tradeoffs

Quantum circuit time-space lower bounds have the same general structure as
their classical branching program counterparts. They require a lemma similar to (B)
that gives an exponentially small probability of producing k outputs with a small
number of queries.

Lemma 4.26 (Quantum generic property). There are constants C and K such that,
for all k where logK n ≤ k ≤ m′ and any quantum circuit C with at most h′(k, n)
layers, there exists a distribution µ such that when x ∼ µ, the probability that C

produces at least k correct output values of f(x) is at most C ·K−k.

Note that, unlike branching programs, quantum circuits must always have
at least logK n qubits in order to query their inputs. Hence, the quantum generic
property only needs to apply when algorithms are expected to produce at least logK n

outputs.

Such lemmas have historically been proving using direct product theorems
(Klauck et al., 2007; Ambainis et al., 2009) or the recording query technique (Hamoudi
and Magniez, 2021). Quantum time-space tradeoffs use the same blocking strategy
as branching programs; however, they cannot use union bounds to account for input
dependent state at the start of a block. Instead, Proposition 3.5 lets us apply
Lemma 4.26 to blocks in the middle of a quantum circuit.

The 22S factor in Proposition 3.5 means that a quantum time-space or cumula-
tive memory lower bound will be half of what you would expect from a classical bound
with the same parameters. Since a quantum circuit must have log2 n qubits to make a
query, we know that the space between layers is always at least log2 n. Therefore the
generic time-space tradeoff for quantum circuits is

T · S is Ω (min{m h′(S, n),m′ Q(f)} · log2 K)

where Q(f) is the bounded-error quantum query complexity of f .

168

Generic method for quantum cumulative complexity bounds

Our generic argument can just as easily be applied to quantum lower bounds
for problems where we have an instance of Lemma 4.26 using Proposition 3.5 to
bound the number of outputs produced even with initial input-dependent state. Since
quantum circuits require at least log2 n qubits to hold the query index, the bounds
derived are like those from Theorem 4.23(b).

Corollary 4.27. Let c > 0. Suppose that function f : Dn → Rm satisfies generic
Lemma 4.26 with m′ that is ω(log2 n). For s > 0, let h(s, n) = h′(s/ log2 K,n). Let
h(s, n) = h0(s)h1(n) where h0(1) = 1 and h0 is constant or a differentiable function
where s/h0(s) is increasing and concave. Let S∗ be defined by:

S∗

h0(S∗) = m h1(n) log2 K

6T
Then the cumulative memory used by a quantum circuit that computes f in time T
with error ε ≤ (1− 1/(2T c)) is at least

1
6 Lh0(n log2 |D|) ·min {m h(S∗, n), 3m′ h′(m′/2, n)} · log2 K.

Additionally if the quantum circuit uses o(m′ logK) qubits, then the cumulative memory
bound instead is 1

6 Lh0(n log2 |D|) ·m · h(S∗, n) · log2 K.

4.7 Applications of our general theorems to classical and
quantum computation

Theorems 4.20 and 4.23 are powerful tools that can convert most existing
time-space lower bounds into asymptotically equivalent lower bounds on the required
cumulative memory. We give a few examples to indicate how our general theorems
can be used.

4.7.1 Classical applications of the generic method

Unique elements Define Uniquen,N : [N]n → P([N]) by

Uniquen,N(x) = {xi | xj ̸= xi for all j ̸= i } .

169

Proposition 4.28 (Lemmas 2 and 3 in (Beame, 1991)). For the uniform distribution
µ on [N]n with N ≥ n,

(A) Prx∼µ[∥Uniquen,N(x)∥ ≥ n/(2e)] ≥ 1/(2e− 1)

(B’) For any partial assignment τ of k ≤ n/4 output values over [N] and any re-
striction π of n/4 coordinates in [n]n, Prx∼µ[Uniquen,N (x) is consistent with τ |
x is consistent with π] ≤ e−k/2.

The above lemma is sufficient to prove that TS is Ω(n2) for the unique ele-
ments problem, and can be easily extended to a cumulative complexity bound using
Theorem 4.23.

Theorem 4.29. For n ≥ N , any branching program computing Uniquen,N in time
T and probability at least 4/5 requires T to be Ω(n2/ log n) or CM(P) to be Ω(n2).
Further, any random access machine computing Uniquen,N with probability at least
4/5 requires cumulative memory Ω(n2)

Proof. By Proposition 4.28, Uniquen,N satisfies conditions (A) and (B) of Section 4.6
with h′(k, n) = n/4, m′ = n/4, m = n/(2e), C = 1, K = 1/(2 lnN) and α =
1/(2e− 1) ≥ 0.2254. Since h′(k, n) is independent of k, the function h0 is the constant
function 1 and h1(n) = n/4 so Lh0 ≡ 1. We then apply Theorem 4.23 to obtain the
claimed lower bounds.

The above theorem is tight for N = n using the algorithm in (Beame, 1991).

Linear Algebra We consider linear algebra over some finite field F. Let D be a
subset of F with d elements.

Definition 3.2. An m× n matrix is (g, h, c)-rigid iff every k × w submatrix where
k ≤ g and w ≥ n− h has rank at least ck. We call (g, h, 1)-rigid matrices (g, h)-rigid.

170

Matrix rigidity is a robust notion of rank and is an important property for prov-
ing time-space and cumulative complexity lower bounds for linear algebra. Fortunately,
Abrahamson proved that there are always rigid square matrices.

Proposition 3.4. [Lemma 4.3 in (Abrahamson, 1991)] There is a constant γ ∈ (0, 1
2)

such that at least a 1− d−1(2/3)γn fraction of the matrices over Dn×n with |D| = d

are (γn, γn)-rigid.

Abrahamson shows in (Abrahamson, 1991) that for any constant c ∈ (0, 1
2)

and m × n matrix A that is (cm, cn, c)-rigid, any D-way branching program that
computes the function f(x) = Ax with expected time T ≥ n and expected space8 S

has TS = Ω(nm log d) where d = |D|. We restate the key property used in that proof.

Proposition 4.30 (Theorem 4.6 in (Abrahamson, 1991)). Let c ∈ (0, 1
2], A be any

m× n matrix that is (g, h, c)-rigid and f be the function f(x) = Ax over F. Let µ be
the uniform distribution on Dn for D ⊆ F with |D| = d. For any restriction π of h
coordinates to values in D and any partial assignment τ of k ≤ g output coordinates
over Fm,

Pr
x∼µ

[(f(x)||τ) | (x||π)] ≤ d−ck

Proof. By permuting the rows and columns of A, we can assume that π restricts the
first h coordinates of x and τ restricts the first k ≤ g output coordinates. We can
view our system as: [

A1,1 A1,2
A2,1 A2,2

] [
x1
x2

]
=
[
y1
y2

]
Where A is fixed by our problem instance and both x1 and y1 are fixed by π and τ

respectively. We want to find the number of x2 ∈ Dn−h that can satisfy the equation
A1,2x2 = y1 − A1,1x1. Since A is a (g, h, c)-rigid matrix and A1,2 is a k × (n− h) sub
matrix of A, we know that A1,2 has rank at least ⌈ck⌉. The set of x2 that agree with π

8(Abrahamson, 1991) defines expected space as the expected value of the log2 of the largest
number of a branching program node that is visited during a computation under best case node
numbering.

171

and τ have dimension at most n− h− ⌈ck⌉, so there are at most dn−h−⌈ck⌉ choices for
x2. Since there are dn−h choices for x2 that are consistent with π, if µ is the uniform
distribution over Dn:

Pr
x∼µ

[(f(x)||τ)|(x||π)] ≤ dn−h−⌊ck⌋

dn−h
≤ d−ck

Theorem 4.31. Let c ∈ (0, 1
2]. Let A be an m × n matrix over D, with |D| = d

that is (g(m), h(n), c)-rigid. Then, for any D-way branching program P computing
f(x) = Ax in T steps with probability at least n−O(1), either T is Ω(g(m)h(n) logn d)
or CM(P) is Ω(g(m)h(n) log d). Further, computing f on a random access machine
requires cumulative memory Ω(g(m)h(n) log d) unconditionally.

Proof. We invoke Theorem 4.20 using Proposition 4.30 to obtain Property (B’) with
K = dc and C = 1. Property (A) is trivial since |f(x)| = m.

By Proposition 3.4 we know that for some constant γ, a random matrix has
a good chance of being (γm, γn)-rigid. This means that computing f(x) = Ax for a
random matrix A in time at most T is likely to require either the cumulative memory
or T log T to be Ω(mn log d). Since Yesha (Yesha, 1984) proved that the n× n DFT
matrix is (n/4, n/4, 1/2)-rigid, the DFT is a concrete example where the cumulative
memory or T log T is Ω(n2 log d); other examples include generalized Fourier transform
matrices over finite fields (Beame et al., 2001, Lemma 28).

Corollary 4.32. If A is an n× n generalized Fourier transform matrix over field F

with characteristic relatively prime to n then any random-access machine computing
f(x) = Ax for x ∈ Dn where D ⊆ F has ∥D∥ = d with probability at least n−O(1)

requires cumulative memory that is Ω(n2 log d).

It is easy to see that our lower bound is asymptotically optimal in these cases.

172

Proposition 4.33 (Theorem 7.1 in (Abrahamson, 1991)). Let f : D2n2 → Fn2

for D ⊆ F and d = |D| be the matrix multiplication function, γ be the constant
from Proposition 3.4, and µ be the uniform distribution over (γm, γn)-rigid matrices.
Choose any integers h and k such that 2(h/γn)2 ≤ k. If γn ≥ 1 then for any D-way
branching program B of height ≤ h the probability that B produces at least k correct
output values of f is at most d2−γk/4.

Theorem 4.34. Multiplying two random matrices in Dn2 with D ⊆ F and d = |D| with
probability at least n−O(1) requires time T that is Ω((n3√log d)/ log n) or cumulative
memory Ω((n6 log d)/T). On random access machines, the cumulative memory bound
is unconditional.

Proof. Proposition 4.33 lets us apply Theorem 4.23 with m = n2, h′(k, n) = γn
√
k/2,

C = d2, α = 1, and K = dγ/4. This gives us that h(s, n) = n
√

2γs/ log2 d, so

h0(s) =
√
s. Then we get that

√
S∗ = mn

√
2γ/ log2 d·log2 K

6T
and hence

S∗ is Ω
(
n6 log d
T 2

)
.

Therefore, we get that either

T is Ω
(
n3 log1/2 d

log n

)

or, since the loss function for h0 is a constant, the cumulative memory is

Ω
(
min

(
(n6 log d)/T, n5 log1/2 d

))
.

Since the decision tree complexity of matrix multiplication is Ω(n2), this expression is
Ω((n6 log d)/T). For random access machines, the same cumulative memory bound
applies without the condition on T .

Matrix problems We can extend our classical results on Boolean matrix multipli-
cation to get a matching lower bound on the cumulative memory complexity. As a
reminder, we used the following key lemma to obtain our time-space tradeoff:

173

Lemma 3.53. Let ε, γ > 0 be the constants from Proposition 3.44. Let k be an integer
such that L(k) ≤ n/2. Any randomized algorithm with at most (2ε/3)kn/L(k) queries
to x can only produce k correct output values of n× n Boolean matrix product A •B
with probability at most 2−γk.

By Lemma 3.51 L(k) ≤ 5
√
k. We can use this to obtain the following bound

on the cumulative memory complexity.

Corollary 4.35. Any classical circuit (or other sequential model in which each output
value is produced at a fixed time step) computing n× n Boolean matrix-multiplication
or Boolean matrix squaring with T queries and space S with success probability more
than 1/(2T) must have cumulative memory that is Ω(n6/T).

Proof. Using Lemma 3.53 we can apply Theorem 4.23 with m(n) = m′(n) = n2,
h′(k, n) = (2ε/15)

√
kn and K = 2γ/2. This gives us that h(s, n) = (2ε/15)

√
2k/γn

and
S∗ = Ω

(
n6

T 2

)
Hence, either T is Ω(n3/ log n) or, as Lh0 is lower bounded by a constant, the cumulative
memory complexity for multiplication is

Ω(min(n6/T, n4)) = Ω(n6/T)

As T must be Ω(n2) to have a success probability of at least 1/(2T).

The bound for squaring follows from the same reduction presented in Corol-
lary 3.40.

4.7.2 Quantum applications of the generic method

Disjoint Collision Pairs Finding In (Hamoudi and Magniez, 2021) the authors
considered the problem of finding k disjoint collisions in a random function f : [m]→
[n], and were able to prove a time-space tradeoff that T 3S is Ω(k3n) for circuits that

174

solve the problem with success probability 2/3. Specifically, they consider circuits
that must output triples (xj2i

, xj2i+1 , yji
) where f(xj2i

) = f(xj2i+1) = yji
. To obtain

this result, they prove the following theorem using the recording query technique:

Proposition 4.36 (Theorem 4.6 in (Hamoudi and Magniez, 2021)). For all 1 ≤ k ≤

n/8 and any quantum circuit C with at most t quantum queries to a random function
f : [m]→ [n], the probability that C produces at least k disjoint collisions in f is at
most O(t3/(k2n))k/2 + 2−k.

The above theorem can be extended to a lemma matching Lemma 4.26 by
choosing a sufficiently small constant δ and setting T = δ k2/3n1/3 to obtain a prob-
ability of at most 21−k. This is sufficient to obtain a matching lower bound on the
cumulative memory complexity using Corollary 4.27.

Theorem 4.37. Finding ω(log2 n) ≤ k ≤ n/8 disjoint collisions in a random function
f : [m]→ [n] with probability at least 2/3 requires cumulative memory Ω(k3n/T 2).

Proof. Our discussion based on Proposition 4.36 lets us apply Corollary 4.27 with
m = m′ = k, h′(k, n) = δk2/3n1/3, and C = K = 2. Thus we have h(s, n) = h′(s, n)
and h0 is a differentiable function where s/h0(s) is an increasing and concave function.
With these parameters, we have:

S∗ is Ω
(
k3n

T 3

)

By Corollary 4.27 with the observation that the loss is constant we get that the
quantum cumulative memory is:

Ω
(

min
(
k3n

T 2 , k
5/3n1/3

))
.

By Proposition 4.36 we know that any quantum circuit with at most T ′ = αk2/3n1/3

layers can produce k disjoint collisions with probability at most 21−k. Thus we know
that T > T ′ and our cumulative memory bound becomes Ω(k3n/T 2).

175

Quantum cumulative memory lower bounds for matrix problems Our
results in Chapter 3 can also be converted to give matching cumulative memory lower
bounds. Here are the bounds we obtain from the results in Section 3.4.

We start by reminding the reader of the key lemma used to prove our quantum
time-space lower bound for matrix vector products.

Lemma 3.22. Let A be any (k, h, c)-rigid m × n matrix over a finite field F and
let fA : Dn → Fm for D ⊆ F be defined by fA(x) = Ax. Then for α > 0 and for
input x sampled uniformly from Dn and any quantum circuit C with at most αh
queries to x, the probability that C produces k correct output values of fA(x) is at most
⌈h/(ck)⌉2 (4H2(α)/|D|1−α)ck.

This lemma can be used to obtain a matching lower bound on cumulative
memory complexity.

Corollary 4.38. Let γ > 0 and c ∈ (0, 1/2] be fixed. If A is a (γn, γn, c)-rigid n× n
matrix over a field F then any quantum circuit using time T and space S that computes
the function f : Dn → Fn for D ⊆ F with d = |D| given by f(x) = Ax with success
probability larger than 1/T requires cumulative memory that is Ω(n2 log d).

Proof. We can apply Corollary 4.27 where C = ⌈1/c⌉, m′(n) = γn, m(n) = n,
h′(k, n) = αγn, and K = dc/6. Thus we have h(s, n) = αγn and h0 is a constant
function. Since h0 is a constant function, Lh0 is lower bounded by a constant and
h(S∗, n) is not sensitive to S∗. This allows us to directly conclude that the cumulative
memory complexity is at least Ω(n2 log d).

Directly applying this in place of Theorem 3.45 gives us matching cumulative
(CM) memory lower bounds for Corollary 3.26 through Corollary 3.35.

Corollary 4.39. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit
with inputs over D that computes the DFT or vector convolution requires CM that is

176

Ω(n2 log d). Any quantum circuit that computes the product of three matrices, matrix
cubing, or matrix inversion requires CM that is Ω(n4 log d). Any quantum circuit that
solves n× n systems of linear equations requires CM that is Ω(n3 log d). Additionally,
any quantum circuit that multiplies two n bit binary numbers requires CM that is
Ω(n2/ log2 n).

Next are the results from Section 3.5. The key lemma used to prove our lower
bound in this section was the following:

Lemma 3.37. Let γ ∈ (0, 1/2) and f : Dn2 ×Dn2 → Fn2 for D ⊆ F with |D| = d be
defined by f(A,B) = AB. Then for any constant β > 0 and quantum circuit C with
at most h = βγn

√
k/2 queries to input matrices A,B sampled uniformly from Dn2,

the probability that A and B are (γn, γn)-rigid and C produces k correct output values
of f(A,B) is at most 16 min(k, n)

√
2k(4H2(4β)/d1−4β)k/4

Again we can use this lemma to get a matching lower bound on the cumulative
memory complexity.

Corollary 4.40. Let F be a field and D ⊆ F with d = |D|. If C is a quantum circuit that
computes the function f : D2n2 → Fn2 for sufficiently large n given by f(A,B) = AB

or the function g : Dn2 → Fn2 given by f(A) = A2 with success probability at least
1/T , then C must have cumulative memory complexity Ω(n6 log(d) /T).

Proof. When β ≤ 0.0429 we have 1− 4β−H2(4β) > 1/6 so the bound in Lemma 3.37
is at most 16 min(k, n)

√
k/2d−k/24. Additionally, since we only need to consider k that

is Ω(log n), we can assume that k is sufficiently large that 16 min(k, n)
√

k/2d−k/24 ≤
16d−k/48. Thus apply Corollary 4.27 with C(n) = 16,m′(n) = m(n) = n2, h′(k, n) =
βγn

√
k/2, and K(n) = d1/48. Thus we have h(s, n) = βγn

√
24s/ log2 d and so h0 is

a differentiable function where s/h0(s) is an increasing and concave function. With
these parameters, we have:

S∗ is Ω
(
n6 log d
T 2

)

177

By Corollary 4.27 with the observation that the loss is constant we get that the
quantum cumulative memory is:

Ω
(
min

(
n6/T, n4

)
· log d

)
.

Since any quantum algorithm with o(n2) queries cannot solve this problem with
probability 1/T , this is always Ω(n6 log d /T). The bound for computing g follows
from the same reduction

Finally, we can get quantum cumulative memory lower bounds for our results
on Boolean matrix problems in Section 3.6. Our results in this section used the
following key lemma:

Lemma 3.46. There are constants ε, γ > 0 such that the following holds. Let
k < n2/100 be an integer. For any quantum circuit C with at most εk3/4n1/2 queries
to x, the probability that C produces k correct output values of n× n Boolean matrix
multiplication A •B is at most 2−γk.

We use the above to obtain the following bound on the cumulative memory
complexity of Boolean matrix multiplication.

Corollary 4.41. Any quantum circuit computing n× n Boolean matrix multiplication
A•B or Boolean matrix squaring A•A with T queries, space S, and success probability
more than 1/(2T) must have cumulative memory that is Ω(n10/T 3)

Proof. Using Lemma 3.46, we can apply Corollary 4.27 with C = 1, m(n) = n2,
m′(n) = n2/8, h′(k, n) = εk3/4√n, K(n) = 2γ . This gives us that h(s, n) = (s/γ)3/4√n
and

S∗ is Ω
(
n10

T 4

)
And as the loss function is lower bounded by a constant, the cumulative memory
complexity for multiplication is

Ω(min(n10/T 3, n4)) = Ω(n10/T 3)

178

as T must be Ω(n2) for any algorithm with success probability at least 1/(2T).

The bound for squaring follows from the same reduction presented in Corol-
lary 3.40.

179

Part II

Energy and the thermodynamics of
computation

180

Chapter 5: Energy-efficient Brownian sampling and
computation

5.1 Introduction

Energy is an increasingly important constraint on our capacity for performing
computation. A study in 2022 found that the global computational power is increasing
at 68% per year while our energy production capacity is only growing at 8% per
year (Luccioni et al., 2023). There has been a growing international interest in
building increasingly large language models — a computational endeavor with massive
energetic costs. The model GPT-3 required an estimated 1,287 MWh of electricity to
train, resulting in an estimated carbon footprint of around 502 tons of CO2 (Luccioni
et al., 2023). These models are not only expensive to train, but also expensive to
use. Chairman of Alphabet John Hennessy said in an interview that interactions
with a LLM likely cost 10 times as much as a regular keyword search, although this
overhead is expected to go down with the help of fine-tuning models (Dastin and Nellis,
2023). Benchmarking on Meta’s 65 billion parameter open source LLM model LLaMA
65B (Touvron et al., 2023) on the Alpaca dataset (Taori et al., 2023) using MIT’s
SuperCloud high-performance computing system (Reuther et al., 2018) shows that the
model requires approximately 3 to 4 Joules per generated token (Samsi et al., 2023).
As computation becomes an increasingly large share of global energy expenditure,
efforts to improve the efficiency of computational devices will yield larger savings.
In addition to strain on the world’s energy infrastructure, it is vitally important to
optimize energetic costs in settings like high performance and mobile computing. The
intense energetic costs of computation often result in large amounts of heat dissipation,
making cooling an expensive engineering consideration and cost for data centers.
Improving the energy efficiency of mobile devices increases the time needed between
recharging and reduces the strain on batteries before they need to be replaced.

Perhaps the best known insights regarding energetic costs of computation

181

come from the works of Landauer and Bennett (Landauer, 1961; Bennett, 1973).
Landauer observed that, in accordance with the second law of thermodynamics, any
computational device which erases information must also dissipate heat. Bennett
then observed that such thermodynamic ‘Landauer costs’ can be avoided by making
computation logically reversible. However, doing so comes with an unavoidable cost
in the time and space of computation (Frank and Ammer, 2017). The ideas of
Landauer and Bennett have inspired a multitude of follow-up works in computer
science that investigate logical reversibility in computation (Li and Vitanyi, 1996;
Demaine et al., 2016). However, recent developments in the emerging field of stochastic
thermodynamics indicate that logical reversibility is not the be-all and end-all of
energetic costs in computation.

Stochastic thermodynamics paints a slightly different picture. The field is
interested in optimizing a quantity known as entropy production, corresponding to
overall change in entropy associated with completing a process (Esposito and Van den
Broeck, 2011; Sagawa, 2014; Strasberg et al., 2015; Wolpert, 2019; Wolpert et al.,
2024). In principle, a process can recuperate some Landauer costs by running it in
reverse and reabsorbing all the dissipated heat. This is only possible when the process
has zero entropy production (i.e., the entropy of the universe did not change), making
it ‘thermodynamically reversible’. Moreover, as we show in Section 6.4, a process that
is logically reversible might still result in positive entropy production depending on
the details of its implementation. The thermodynamic reversibility of a computation
is harder to define than logical reversibility, as it not only depends on the details of the
computation, but also the choice of input distribution and the underlying physics of
the device. In the near term, these kinds of optimizations are unlikely to be the most
efficient route to improving energetic costs of computation. Higher order energetic
inefficiencies in computational devices dominate theoretical thermodynamic considera-
tions. Nevertheless, after such engineering inefficiencies are addressed, understanding
and optimizing the stochastic thermodynamics of computation is essential to further
reducing energetic costs.

182

Reversible computation A (deterministic) computation is considered logically
reversible if each reachable configuration of the machine has at most one possible
predecessor state. Thus knowing the current configuration of a logically reversible
machine uniquely determines its history. Whenever two or more predecessor configu-
rations of a machine lead to the same successor configuration, the step is said to be
irreversible. A typical example of an irreversible operation is bit erasure where an
erased bit could have had the value zero or one but in either case becomes zero.

As argued by Landauer and Bennett, computation must dissipate kT ln 2 heat
per irreversible step (or more concretely kT lnn if there are n possible predecessor
configurations, where the scaling factor kT, in units of Joules, is the Boltzmann constant
times temperature in Kelvin) (Landauer, 1961; Bennett, 1973). For simplicity, in
the rest of this dissertation, we will think of heat as being measured in units such
that kT = 1 as we will be discussing systems at a fixed temperature. Intuitively this
heat dissipation, also known as a Landauer cost, is required to counteract a decrease
in the entropy of a machine’s state when it erases information. This is a necessary
consequence of the second law of thermodynamics, which states that the entropy of
the universe can never decrease. However, reversible computation, in which no step is
irreversible, has no such per-step heat dissipation lower-bound. Moreover, it is possible
to reprogram any deterministic computation as a sequence of logically reversible
steps, provided that the computation is allowed to save a copy of its input (Bennett,
1973). While general methods of constructing reversible computations from irreversible
computation come at some asymptotic cost to the space and/or time complexity of the
program, the overhead can be made surprisingly small (Bennett, 1989; Lange et al.,
2000; Saeedi and Markov, 2013; Aaronson et al., 2017).

Although reversible computation gives a way to sidestep Landauer costs, it is
insufficient to make “zero energy” computation. The two best known models for low
energy computing are Ballistic (Fredkin and Toffoli, 1982) and Brownian computation
(Bennett, 1973, 1982; Bennett and Landauer, 2011). Ballistic computation is designed
using odd degrees of freedom (e.g. momentum) to drive computation in the forward

183

direction. However, as pointed out in (Bennett, 1982), this model assumes the ability
to design devices with perfect precision and isolate them from all thermal noise. On
the other hand, Brownian computation takes advantage of thermal fluctuations to
drive computation. Without any physical asymmetry, such as energy dissipation, to
bias a computation in the desired direction, a device governed by Brownian motion
will simply take a random walk over its state space. Thus, Bennett argues that
simply making a computation logically reversible and not using any energy to drive it
forward turns it into a 1D unbiased random walk that “does not deserve to be called
a computation” (Bennett, 1973). While such a machine will eventually enter a state
containing the desired output, it only spends a negligible fraction of its time in such
a state. Bennett gives a simple remedy by putting a small (constant) bias on each
forward step, i.e. an energetic cost per step. Our results show how to do logically
reversible computation, with high probability of output, but without requiring any
such energetic forward bias per step.

Another line of work has argued that reusable computation without energy
dissipation is impossible, even for reversible computation (Norton, 2013; Strasberg
et al., 2015). These works argue that a logically reversible computer running a
computation that takes T steps and starts in a fixed input state will relax to a
distribution over states that has Ω(log T) bits of entropy. Thus resetting such a
machine in order to run it on a new input would require dissipating Ω(log T) heat.
Our results will sidestep this issue to perform computation where the thermodynamic
costs are independent of T .

Stochastic thermodynamics of computation Recent developments in the field
of stochastic thermodynamics indicate that counting irreversible operations may not
be the correct way to measure the energy costs of a computation. Instead, physicists
(Esposito and Van den Broeck, 2011; Sagawa, 2014; Strasberg et al., 2015; Wolpert,
2019; Wolpert et al., 2024) suggest that the entropy production — or the total change
of the entropy of the universe — is a more accurate method of lower bounding the

184

energy costs of computation. It is possible to have logically irreversible operations like
bit erasure that can be performed with zero entropy production for particular input
distributions. While Landauer showed that heat must be released when erasing a bit,
that heat can later be reabsorbed if the bit is reassigned to a uniformly random value.

More specifically one can distinguish between the heat that must be released
by a process and the net change of the entropy of the universe due to a process.
These quantities are referred to in the literature as entropy flow (EF) and entropy
production (EP) respectively. The entropy flow of a process is lower bounded by its
Landauer cost and any excess entropy flow becomes entropy production. A process is
said to be thermodynamically reversible if its entropy production is zero. EP is an
extremely relevant thermodynamic quantity, as it can be viewed as a fundamental
lower bound on the energetic costs of a process.

Computational sampling In this chapter, we find that in addition to typical
function computation, our techniques are applicable to a type of computation called
computational distribution sampling. While more niche in its applications than
function computation, distribution sampling is an important problem. For example
sampling large prime numbers is essential for creating (non-quantum) cryptographically
secure RSA keys and sampling from the co-domain of hash functions is the primary
mechanism behind many proof of work schemes (Rivest et al., 1978; Nakamoto,
2009). Distribution sampling can even be a computationally hard problem — in fact
boson sampling is the problem behind many recent attempts at quantum supremacy
(Aaronson and Arkhipov, 2011).

Prior work has defined physical processes that can be used to sample from
desirable distributions D in a thermodynamically reversible manner (Owen et al.,
2019; Cappelletti et al., 2020). In these works the distribution D is “hard-coded” and
no computation is performed; the device is defined in terms of the target distribution’s
probability density function (PDF). Our constructions are defined in terms of a

185

computational device M (e.g. a Turing machine) that maps a uniformly random value
in {0, 1}n to a corresponding sample from the target distribution D in T steps on all
inputs. With access to a description of M, we can always efficiently construct our
sampling device. However, computing the PDF of D from a description of M is highly
non-trivial. If D represents the output of a Boolean circuit M on a uniformly random
input then computing the PDF of D is a hard problem. Moreover, any construction
built directly from the PDF encodes the truth table of this function and thus requires
descriptional complexity that scales linearly with the size of the distribution’s support.
Since our constructions are based on M, their descriptional complexity is directly
proportional to that of M which is typically significantly smaller.

5.1.1 Main results

We design machines that only change state according to a ‘Brownian motion’
like random walk over their state space. One can think of these devices as being driven
only by thermal fluctuations. By itself such a machine may not seem very useful —
even if the unbiased random walk causes the machine to perform a useful computation

— intuition suggests it will not be able to “lock in” its answer. Nonetheless, we design
such machines in a way where, after giving the random walk sufficient time to explore
the computational space, an observer can measure its state and will likely find that
the desired computation has completed (specifically, with constant probability per
computation). Whereas Bennett (Bennett, 1973) added heat dissipation to drive his
reversible computation to the output state, our constructions avoid any such cost
while only slightly increasing the time complexity of the underlying computation.

Turing machine function computation In Theorem 5.15 we show that any
Turing machine that runs in time ≤ T on all inputs of size n ∈ N and has outputs
of size ≤ m can be simulated by another device that runs in Θ(T 2 + n2) time and
produces the intended output with probability ≥ 1/4 while only expending O(n+m)
energy. Notably, the energy cost is not dependent on the running time of the original

186

Turing machine. This is in contrast to Bennett’s approach (Bennett, 1973) to this
same task, which requires per-step heat dissipation to drive the computation forward.

Computational sampling results We also give two sampling computation results
in Section 5.3 and Section 5.4. We design machines where either: (1) after sufficient
time the machine has a constant probability of producing independent and identically
distributed (i.i.d.) samples according to our desired probability distribution in Theo-
rem 5.9, or (2) after sufficient time the machine will always be in a state containing
samples from a distribution close to the target in Theorem 5.12. These kinds of
machines are called Las Vegas and Monte Carlo, respectively, in homage to the similar
categories of randomized algorithms. Given a logically reversible Turing machine
that samples from the target distribution on all inputs in T steps and uses n bits
of randomness, our constructions produce samples after Θ(T 2 + n2) time. Moreover,
as with the function computation result, our sampling machines are driven entirely
by Brownian motion and do not require any heat dissipation during computation
or resetting; the only thermodynamic costs associated with our devices are due to
observations necessary to record desired outputs, which scale linearly with the output
size.

5.1.2 Roadmap

In Section 5.2 we give a brief overview of our underlying physical assumptions
and computational models. Next in Section 5.3 and Section 5.4 we present our Las
Vegas and Monte Carlo constructions. In Section 5.5 we show how our sampling
constructions can be extended to perform function computation. Finally, in Section 5.6
we give some concluding remarks on the results in this chapter.

187

5.2 Preliminaries

Brownian computation In this chapter we are primarily interested in designing
abstract devices that can perform computation without being driven forward with
a battery. Instead, we desire our device to perform computation entirely driven by
thermal fluctuations caused by interactions with its environment (so-called Brownian
computation; see the Introduction for a discussion of alternative settings.) We
often take for granted that computational models like Turing machines or branching
programs advance forwards in time from an initial to a final configuration. However,
in Brownian computation, the particles have no intrinsic notion of which transitions
correspond to performing computation in the “forward” direction. Unless energy is
dissipated to bias a computation in the correct direction, it will be just as likely to
transition to any valid predecessor state as any desired successor state.

Thus we can view the physical evolution of a machine as a random walk on
something called its configuration graph.

Definition 5.1. Let M be some computational device with a (possibly infinite) set
of possible states Σ and a transition function f : Σ → 2Σ. Then the configuration
graph GM of M is the directed graph featuring one node for each element of Σ and the
directed edge (u, v) when v ∈ f(u).

Note that following the directed edges in GM corresponds to simulating a
computation of M. In the language of computation graphs, we can say that a machine
M is deterministic if all nodes have maximum out-degree 1. Likewise, we can say a
computation is logically reversible if all nodes have maximum in-degree 1.

Without energy to bias computation in the correct direction, one should expect
a machine to evolve according to an unbiased random walk on an undirected version
of its computation graph. However, energy can be dissipated to bias a computation
towards particularly desired transitions. We can model this by assigning free energy
to the configurations of a machine.

188

Definition 5.2. Let M be a machine with a configuration graph GM and a set of
possible states Σ and transition function f . We can augment M with a free energy
function ∆G : Σ → R ∪ {∞}. For a free energy function ∆G, when in some state
A ∈ Σ, the rate of transitioning to another state B ∈ Σ is given by Metropolis
dynamics (Metropolis et al., 1953). More specifically the time until A transitions to
B is distributed according to an exponential random variable with parameter λA→B

given by:

λA→B =
κe∆G(A)−∆G(B) if ∆G(A) < ∆G(B)
κ otherwise

(5.1)

When either B ∈ f(A) or A ∈ f(B) and zero otherwise. When there are multiple
possible transitions from state A, the time to transition is the minimum of the
exponential random variables for each possible transition and the argmin of these
variables dictates the next state of M. In other words, let M starts in a state
A and f(A) = {X1, . . . , Xk}. Let t1, . . . , tk be random variables drawn according
to an exponential random variable with parameter λA→X1 , . . . , λA→Xk

. Then the
time to transition to the next state is min(t1, . . . , tk) and the next state will be
argmin(t1, . . . , tk). We call a machine driven by such dynamics a Brownian computer.

We choose to consider Metropolis dynamics in this chapter, although there are
other choices such as Kawasaki dynamics (Kawasaki, 1966), as Metropolis dynamics
provide a fundamental upper bound on the rate at which transitions can occur. While
the time between measurements in our protocols depend on the choice of dynamics,
they have no impact on the equilibrium distribution over states. Thus our results
could be directly adapted to other kinetic models.

For a logically reversible computation, Metropolis dynamics mean that by
dissipating constant energy per forward step of a computation that takes T steps,
one can have a constant probability of ending up at the correct final state (Bennett,
1973). Logically irreversible steps require additional energy dissipation. If a transition
has p predecessor states and q successor states, then log(p/q) + ε energy must be

189

dissipated as heat to make the transition have the same forward bias as a logically
reversible step (Landauer, 1961; Bennett, 1973). This Landauer cost can be avoided
by making a computation logically reversible (Bennett, 1973); however, all known
general techniques for converting irreversible algorithms to reversible ones feature an
asymptotic time or space overhead (Bennett, 1989; Lange et al., 2000; Saeedi and
Markov, 2013; Aaronson et al., 2017). In fact, relative to random oracles there is
a provable separation between time-space trade-offs for reversible and irreversible
computation (Frank and Ammer, 2017).

Entropy flow and production The entropy production of a process is however
much excess entropy the process produces relative to the change in the entropy of the
system. This can be characterized in terms of the entropy flow (EF), or heat released,
and the change in the Shannon entropy (∆S) of the system.

0 ≤ EP = EF + ∆S (5.2)

In theory, this makes it possible to offset increases in entropy by absorbing
heat from the environment or vice versa. However, for our purposes, such savings
require complex interactions between a device and its observer that complicate our
model. Thus we will use Definition 5.4 to explicitly define the thermodynamic costs
of our operations without diving into the details of the underlying thermodynamics.
It is worth noting that this means our constructions only represent upper bounds
on thermodynamic costs, as more fine-grained analysis and complex protocols may
recover some (or all) of the costs we outline in this definition.

Distribution sampling A standard way to define a distribution sampler (or random
number generator) is as a probabilistic algorithm which has access to fair coin flips
and output samples from distribution D when executed. It is well-known that

190

the randomized algorithm’s randomness can be moved “up-front” as input to a
deterministic algorithm. Therefore we define:

Definition 5.3. Let D be a probability distribution over finite domain D. We say a
function g : {0, 1}n → D is a D-generator if g(x) ∼ D when x is chosen uniformly at
random.

Note that for all distributions other than uniform, a D-generator cannot be
directly computed in a reversible manner since that would require g to be one-to-
one. We can get around this restriction by instead reversibly computing a function
h(x) = (x, g(x)), which is injective since it preserves the input x.

In theory one could — given a machine M that computes a D-generator function
h — run M and pre-compute the value of h on all inputs in {0, 1}n. Doing so would
allow the construction of an energy and time efficient device that samples from D

via a lookup table, albeit physically of exponential (in n) size. This is similar to how
all boolean functions have an exponential sized constant depth circuit. As such we
will only be concerned with the task of designing devices that are constructed from a
description of M in time that is polynomial in both n and the size of M.

Upper bounding energy costs To upper bound the energy used by a computation,
we need to formalize the energy costs of certain actions involving a device and an
operator. We assume that the energy costs of protocols we consider in this chapter
can be broken down as follows:

Definition 5.4. Let M be some computational device and GM be its configuration
graph. An operator interacts with the device via some protocol P described as a
sequence of control flow statements and the following actions on M:

1. Set Energy(∆G : Σ → R ∪ {∞}): change the energy of the states in GM to
match this function.

191

2. Measure(f : Σ→ R): the operator records the value of f applied to the state of
M.

3. Wait(t): the operator waits at least t time.

As justified below, we ascribe the following energy costs to each of these operations
when M is in a distribution over states D and currently has the energy function ∆G:

1. C(Set Energy(∆G′ : Σ→ R)) = ∑
x∈Σ Prx′∼D[x = x′](∆G′(x)−∆G(x))

2. C(Measure(f : Σ→ R)) = S(f(D))

3. C(Wait(t)) = 0

The energy cost of executing a protocol is a sum of the energy costs of each of these
steps.

Now we provide some thoughts on these three costs.

First C(Set Energy(·)): Intuitively when changing the free energy of the states
of a system we need to exert work (or energy) equal to the change in free energy of
its state. This means that there is no inherent cost to changing the free energy of
states that are not occupied (i.e. Prx′∼D[x = x′] = 0). This cost is unavoidable due to
conservation of energy and can be exactly achieved by performing the transformation
quasi-statically (Esposito and Van den Broeck, 2011).

C(Measure(·)): Measuring and recording the value of a random variable X
with S entropy induces a Landauer energy cost of S when that variable is subsequently
deleted. While writing the value of the random variable on an empty tape has no
inherent cost (and in fact does not change the entropy of the universe, as the random
variable is currently a deterministic function of the state of the device), over time the
recorded value becomes decoupled from the state of M and after the two variables
are perfectly uncorrelated, the entropy of the universe must have increased by S.

192

Fine-tuning a device so that the energetic cost of erasure is exactly the Landauer cost
is computationally intensive. If this is the case, then our energy upper bound for
recording should be the number of recorded bits instead. This is the bound we use in
our results. While we define a very general measurement operator, in practice we will
restrict our constructions to only use measurements that project onto a subset of the
bits. This ensures that nontrivial computation cannot hide in our measurements.

C(Wait(t)): While there is existing literature on the thermodynamic costs of
timekeeping (Pearson et al., 2021), the energy cost of this operation can be amortized
over an arbitrary number of concurrent tasks all completed by a single observer who
only has to pay this cost once. Thus we will assume the existence of a global clock and
say that our protocols do not need to pay for the energy costs of its timekeeping.1 In
theory the control flow that governs the behavior of the observer in a protocol could
induce non-trivial energy costs;2 however, we will only be considering very simple
protocols where these energy costs are asymptotically dominated by those mentioned
above.

Avoiding reset costs Often computational protocols defined in a model like this
would require a special reset operation to restore the device into a specific configuration
before it can be reused. This operation reduces the entropy of the system and thus
requires expending work (or energy). In fact if a device performs a computation that
takes T steps and all of its states have equal values of ∆G then when that device
reaches its equilibrium state, Ω(log T) work must be spent to reset it (Norton, 2013).
We will be interested in designing computational devices and protocols that perform
computational tasks where their energy costs scale only linearly with the input size n
and independently of the time complexity T . In doing so, we will need to sidestep the

1In addition to amortization, our protocols do not need particularly accurate clocks. In fact, our
protocols all work in the limit of each wait instruction taking infinite time. We only require clocks to
upper bound the time until our systems are sufficiently well mixed.

2In fact in this model the observer could just perform our desired computation without interacting
with the device at all!

193

resetting cost described in (Norton, 2013). We do this by defining our machines in
a way where they can perform the intended protocols from any initial distribution
over states, making it unnecessary to reset the machine before performing the next
round of computation. There will be a cost writing down any output produced in the
case of a sampler, and a cost for writing both an input and output in the function
computation case, but these will not require any additional ‘resetting’ due to how our
protocols are defined. We will consider three specific types of computational protocols,
two of which are samplers, namely Las Vegas sampling and Monte Carlo sampling,
and one being function computation. The choice of names Las Vegas and Monte
Carlo for these samplers comes from the use of the terms in the context of randomized
algorithms. A Las Vegas algorithm always produces the correct output with a small
resource cost in expectation. Meanwhile a Monte Carlo algorithm has a fixed resource
cost, but in exchange has a small failure probability.

With these definitions, it is possible to describe general strategies that convert
a machine M into one that can perform sampling or function computation where
the energy costs are independent of the time complexity of M. We can describe this
conversion for an arbitrary machine M in terms of its configuration graph GM, giving
a complete description of our construction in the language of Turing machines.

Turing machines While our constructions can be applied more generally, we will
work through the details of how a Turing machine M can be adapted to give our
devices for sampling and function computation.

Definition 5.5. An m tape Turing machine M is a tuple (S,Σ, f) where S is a set of
configurations and Σ is a set of symbols for the tape. f is a set of rewrite rules of the
form (s, σ)→ (s′, σ′) or s→ (s′, d), where s, s′ ∈ S, σ, σ′ ∈ Σm and d ∈ {L, ∅, R}m.

In each timestep, the machine reads the values on the tape at each of its
heads and its configuration and then applies some rewrite rule in f that matches this
configuration. Rewrite rules of the form (s, σ)→ (s′, σ′) change the configuration and

194

the values at the current locations on the tapes. Rules of the form s→ (s′, d) change
the configuration and cause the i’th tape head to move one space to the left when
di = L, one space to the right when di = R, or stay in the same place when di = ∅.

Readers familiar with Turing machines might be used to rewrite rules that map
a head configuration and a tape symbol to a new head configuration, tape symbol,
and a direction to move the head. The above definition of rewrite rules is functionally
equivalent to this; however, by separating rules that write to the tape from those
that move the head, it becomes easy to check that a Turing machine is logically
reversible by inspecting its rewrite rules (Bennett, 1973). Our results work equally
well for the more standard definition of a Turing machine, although defining the exact
modifications to the transition rules requires a bit more care.

Our starting machine We will make a couple of simplifying assumptions about the
machine M that will make the proofs easier to follow; however, they are not strictly
necessary for our argument to work.

1. M has a read-only input tape and a write-only output tape and starts with the
input (or input seed) b ∈ {0, 1}n written on its input tape with blank characters
on either end of the input.

2. M is a reversible Turing machine. This can be achieved by applying Bennett’s
reversible pebble game construction (Bennett, 1989) to M.

3. M starts in a configuration A with the head at the far-right of the input tape
(looking at the first blank). The output tape starts empty.

4. M produces the output in time at most T , which is known to this construction.
We can get the same results for a slightly different construction if T is not known

195

ahead of time, but instead we have the guarantee that all paths in M have the
same length.3

5.3 Las Vegas sampler

We first give our formal definition of what it means for a machine to be a Las
Vegas sampler. Intuitively, we can generate the exact probability distribution at the
cost of having to reject some samples as invalid.

Definition 5.6. Let M be a machine augmented with a free energy function ∆G
where each configuration A ∈ Σ can be represented as a tuple of registers (W,M,O)
where W is the internal state of the machine, M are measurable metadata bits, and
O is a potential output. We say that M is a Las Vegas sampler for a distribution
D if the outputs of the following protocol starting from any initial configuration are
independent samples from D for some τ > 0:

PLV :
v := Measure((W,M,O)→M)
while(v = 0):

Wait(τ)
v := Measure((W,M,O)→M)

repeat:
Wait(τ)
if(Measure((W,M,O)→M) = −v):

output(Measure((W,M,O)→ O))
v := −v

The steps before the repeat statement in the above protocol are used for
initialization and only need to be completed once. Then the device can be infinitely
reused to generate new samples.

3Moreover, a slight modification of the construction carries through even if we merely have the
guarantee that M halts on all inputs (i.e. if we don’t know T), however in that case we loose the
probability bounds in Theorem 5.9. See Section 5.6 for further discussion.

196

For our construction, the metadata register in the above protocol are used
to guarantee the independence of the samples. In particular the metadata register
takes on values in {−1, 0, 1} where transitions between values −1 and 1 require going
through states with the value 0 that cause all information about the previous sample
to be forgotten. After obtaining a sample where the metadata had the value −1 the
next time we can obtain a sample where the metadata has the value 1 we know that
the value is independent of the previous choice. For this sampler to be useful, it is
important that only a few measurements are necessary to produce each new sample.

Definition 5.7. A Las Vegas sampler is (δ, T)-efficient if, for any distribution over
states at the beginning of the “repeat” statement, the following “if” statement in the
protocol is always satisfied with probability at least δ assuming that τ ≥ T .

If we can show that a Las-Vegas sampler is (δ, τ)-efficient then the probability
that the metadata register needs to be read c times before producing a new output
is at most δc. This gives us a strong tail bound on the number of trials before each
successful sample.

5.3.1 Construction

In this section we describe how to modify a Turing machine computing a
D-generator into an efficient Las Vegas sampler for D. Importantly, while we specify
how to modify a Turing machine, our modifications could be applied to almost any
reasonable computational device. Our construction is divided into three parts: the
randomizer, the computation, and the output holding regions; below we describe at a
high level how these parts are designed for the construction of Las Vegas samplers.

As a starting point we take a reversible Turing machine M computing a D-
generator using inputs over {0, 1}n. The requirement that the Turing machine be
reversible is not restrictive as any Turing machine computing this function can be
converted to a reversible one with only a small asymptotic overhead in time and space

197

Figure 5.1: A simple example of our Las Vegas construction, M∗, applied to a Turing
machine M with no transition rules and a single bit of input (i.e. n = 1), that computes
the identity function. Circles: randomizer with one random bit (n = 1, for input), one
ancillary bit and with metadata m = 0. Squares: output holding regions labeled with
their output bit with metadata m = −1 or m = 1. Note that for simplicity multiple
distinct states of the device representing the same high level state of the machine have
been condensed into a single node.

complexity (Bennett, 1989). Since the Turing machine is reversible, its configuration
graph can be described as a collection of 2n chains. We assume that M runs in at most
T steps, by which we mean that any chain in M’s configuration graph is of length at
most T .

Our modified machine M∗ will have a configuration graph that is layered
in the sense that the nodes are partitioned such that nodes in layer Li only have
edges to layers Li−1 and Li+1. A simple example of the configuration graph for our
construction acting on the trivial machine M with only a single bit of input and no
machine transitions can be seen in Figure 5.1, and the configuration graph for our full
construction is illustrated schematically in Figure 5.2. Below we describe how our Las
Vegas sampler M∗ is constructed, assuming we start with a reversible Turing machine
M.

Adding the output holding region In order to have a constant probability of
producing a new output after measurement, we force the computation’s graph to have
a constant fraction of its configurations containing the output. We achieve this by

198

Figure 5.2: Our general Las Vegas construction M∗ from a reversible Turing machine
M. R is the randomizer (see Figure 5.1) which generates random binary input words
b, and Mb represents the chain of states for M on input b. The gray area represents
the output holding states.

artificially boosting the length of M’s computation by adding a tail of redundant
configurations containing the output. Specifically, we elongate ‘short’ computations:
we modify M by elongating paths so that all the chains in its configuration graph
have exactly the same length. We then further extend the length of each chain C with
redundant “output holding” nodes that all contain the value in the output register
from the terminal configurations of C. We can implement these changes in a Turing
machine as follows:

Let Tcomp be the smallest power of two such that T ≤ Tcomp. Let Tout be the
smallest power of two that is at least as large as 2Tcomp + n+ 1. Note that Tout
and Tcomp are both O(T + n). We will start by extending M to machine M1 by
adding the output holding region. In other words, we will artificially manipulate
the number of steps so that our machine takes the same number of steps for all
input bitstrings and then further extend the length of the computation so that
the machine is likely to observe the output when sampled.

We will do this by augmenting the machine with two new tapes designed
to contain logically reversible counters. We will refer to these tapes as the
computation-counting and output-counting tapes. The computation-counting
tape starts with the value 0 expressed as a log2 Tcomp bit binary number (sur-
rounded by symbols) with the least significant bit on the right and the head on
this tape starts to the right of this number. The output-counting tape starts with
the value 0 expressed as a log2 Tout bit binary number with the head to the left of
the number. For each rewrite rule in f that changes the state of M to some state

199

B, we change the target state of that rule to a new state αB. We additionally
add new rewrite rules to f for each configuration that was terminal in M to map
that state to a new state αB. We add the following auxiliary states and rules
that only act on the computation-counting tape:

αc,B → (βc,B, L) γc,B → (ξc,B, R)
(βc,B, 1)→ (αc,B, 0) (ξc,B, 0)→ (γc,B, 0)
(βc,B, 0)→ (γc,B, 1) (ξc,B,)→ (B,)
(βc,B,)→ (ωc,)

Adding the above rules creates a (reversible) counter in the computation-counting
tape that will increment after simulating each step of M. When M would have
halted, the additional rules cause the machine to instead increment the counter.
These new rules give us a machine where a state is terminal if and only if the state
is ωc and the computation always runs for the same number of steps regardless
of the input. Now we can add more rules that transition out of ωc and use the
output-counting tape to produce our output holding region. Specifically the new
rules for this act only on the output-counting tape.

(ωc,)→ (γo,) γo → (ξo, R)
(ξo, 0)→ (γo, 0) (ξo,)→ (χo,)
(χo,)→ (αo,) (βo, 1)→ (αo, 0)

αo → (βo, L) (βo, 0)→ (γo, 1)
(βo,)→⊥

Where ⊥ is a new halting configuration for the machine. We add χo as an
additional state this counter goes through so that the number of steps between
each time this counter is incremented is the same as the number of steps for the
computation-counting tape. If instead of knowing the value of T when designing
this machine we have the guarantee that all chains in M have the same length,
we can instead design the counters so that we first count up to T on an initially
blank computation-counting tape as we perform our computation. Then we count
up to 2T + n on an initially blank output-counting tape. This requires that all
chains of M have the same length to sample from the desired distribution, but
removes the requirement of knowing T ahead of time.

While incrementing and decrementing length O(log T) counters on a Turing
machine can take Θ(log T) steps for some configurations, the amortized cost of these
operations is only O(1) each, so adding these counters does not change the asymptotic

200

complexity of the computation. Together, these additional states and modified
transitions give us a reversible machine M1 where all computation paths take the same
number of steps. The state-space of the machine contains sufficient output-holding
states for our general Las Vegas construction so that the machine will have a constant
fraction of the states containing a sample from the distribution.

The randomizer Let n be the number of bits that machine M starts with on its
random bitstring input tape. We next design a randomizer that allows M1 to change
its input in order to sample from the correct distribution. Specifically the randomizer
modifies the configuration graph by adding n+ 1 layers of states each containing one
node corresponding to each length n+ 1 bitstring. Edges connect these nodes such
that the node at layer i representing input x is connected to the two nodes at layer
i+ 1 representing inputs x and x⊕i.4 This is known as a butterfly graph and has the
property that any random walk over its state space that starts on the first layer and
ends on the final layer will have a uniformly random assignment to the first n bits.
The extraneous final bit in the bitstrings associated with the states of this graph will
be used later to ensure that our configuration graph has the invariant where every
node has exactly 0 or 2 neighbors to its left and to its right. Importantly, this final
bit is stored in the configuration of the head of the Turing machine rather than an
unexpected bit on the input tape.

Lemma 5.8. An unbiased random walk that starts on the leftmost layer of this graph
and ends on the rightmost layer will end up in a node whose work register contains
n+ 1 bits of which the first n are uniformly random.

Proof. Let p be any path through this graph that starts on the left and ends on the
right. Starting from column 0, let t1, . . . tn be the last time-instant where the random
walk enters each column 1, . . . , n. We note that the choice of edge taken at time

4If x = x1, . . . xn, we use x⊕i to denote x⊕i = x1, . . . , xi−1, 1− xi, xi+1, . . . , xn.

201

ti determines the value of bit i − 1 assigned to the node reached at the end of the
walk. Since this is an unbiased random walk, the choice of which edge is taken during
each of these time-steps is uniformly random. Thus the random walk will end with a
uniformly random bitstring of length n, plus one ancillary bit.

We can describe such a randomizer in a Turing machine as follows:

Here we will describe a set of additional configurations and transition rules that
create the butterfly graph described above. These additions will actually be added
to our machine in the next step — here we are merely defining the configurations
and rules that implement a randomizer. We add transition rules that can be used
to randomize the input before leading to the starting state of the machine (lets
consider this state in M1 to be A). More specifically we add the following new
states and transition rules that act only on the input tape:

(αr, 0)→ (βr, 0) (αr, 0)→ (βr, 1)
(αr, 1)→ (βr, 0) (αr, 1)→ (βr, 1)
(αr,)→ (A0,) (αr,)→ (A1,)
(A0,)→ (βr,) (A1,)→ (βr,)

βr → (αr, R)

Instead of starting in the configuration A with the head to the right of the input
tape, these rules require a machine that starts in the configuration αr with the
head to the left of the input tape. These changes lead to a machine that is neither
logically reversible nor deterministic. However, each non-deterministic step of the
machine overwrites one (uniform) random bit with another, so the computation
is not biased in either direction. Note that instead of transitioning to the
configuration A, these rules describe 4 replacement configurations A0, A1, A0, A1.
These new configurations will replace the original configuration A when we connect
the randomizer to the computation in the next step. Together, these rules enable
the machine to select a uniformly random input b ∈ {0, 1}n on the input tape
and end in one of two possible configurations representing the same input.

These states and transition rules will be added later to complete the construc-
tion.

202

Linking the randomizer and the computation Observe that there is one node
on either side of the randomizer corresponding to each bit-string of length n+ 1, which
gives us two nodes corresponding to each bit-string b of length n by ignoring the last
bit. As shown in Figure 5.2, on each side of the randomizer, for each bitstring b of
length n, we add two copies of the chain in M′ corresponding to input b and connect
their starting configurations to both of the nodes in the randomizer corresponding to
input b. We finally add edges that link the node for step t in each of these chains to
the node for step t+ 1 in the other chain. Doing this gives us a layered graph where
each node has degree zero or two in each direction, so a random walk on this graph
behaves like a one-dimensional random walk on the layers. We assign metadata value
M = −1 to all the nodes we added in this process to the left of the randomizer that
appear after chain link T (where we know the nodes contain samples from D in their
output values) and metadata value M = 1 to the same nodes for the chains on the
right of the randomizer. All other nodes have metadata value M = 0.

We can implement these changes in the Turing machine as follows:

Let M1 be the chiral inversion of M1. Specifically for each transition rule of
M1 that moves the heads of the Turing machine M1 moves the heads of all the
tapes except for the computation-counting, output-counting, and output tapes
in the opposite direction. We note that M1 behaves the same as M1 if the
starting configurations of all the other tapes is inverted around the heads. We
will have two copies each of M1 and M1 denoted as M0

1,M
1
1,M

0
1, and M1

1. Each
configuration B will be denoted B0, B1, B0 and B1 for these respective machines.

We will start constructing M∗ by combining the states and transition
rules of M0

1,M
1
1,M

0
1 and M1

1. Now to connect the states of the four machines,
we will add the rules we defined above for the randomizer and change the initial
configuration to start in the state αr with the head to the left of the input tape.

M0
1 and M1

1 acting on the (forward) input and serve as the chains on the
right in the configuration graph. The states of M0

1 and M1
1 act on the (backwards)

input like the chains to the left of the randomizer in the configuration graph. All
that remains is to allow the states in M0

1 / M1
1 and M0

1 / M1
1 to transition to

one another so that all nodes in the configuration graph have 2 left and 2 right
neighbors. We can achieve this by taking each transition rule from each of these

203

machines and making a copy of it that maps to the equivalent state in the other
machine. For example if M1 had the transition rule B → (C,R) then we would
add the four rules:

B0 → (C1, R) B1 → (C0, R)
B0 → (C1, L) B1 → (C1, L)

This completes our Turing machine construction of M∗.

Specifically we can view M∗ as a Las Vegas sampler where the tapes, head
locations, and state are in the work registers and the output register is the output
tape. The metadata is set to −1 (or 1) when the machine is in states corresponding
to incrementing the output-counting tape in the chirally inverted (or non-inverted)
machines and is otherwise set to 0. By Theorem 5.9, this makes M∗ a 3/4-efficient
Las Vegas sampler.

The sampling procedure We let M∗ be the machine constructed above. We will
now give a general strategy for an observer to measure M∗ to get independent samples
from the distribution D. The first sample is obtained by waiting time Θ(T 2 + n2)
between measurements of the metadata register, iterating until a non-zero metadata
value is observed. The observer remembers the last observed metadata bit. The
observer then waits time Θ(T 2 +r2) between measurements until the metadata register
is −1 times the value it had during the last recorded sample, and then records the
value of the output register.

The configuration graph of our construction has diameter O(T + n). Thus
waiting time Θ(T 2+n2) between samples is sufficient for there to be a ≥ 1/4 probability
of observing the needed metadata on measurement.

Theorem 5.9. Let M be a reversible Turing machine that computes a D-sampler
with n input bits that runs in time at most T on all inputs. Then applying the
above construction and procedure to M yields a Brownian computer M∗ that when
augmented with the constant energy function yields a (1/4,Θ(T 2 + n2))-efficient Las

204

Vegas sampler for D. Moreover, the energetic cost of each sample generated from M∗

when the support of D is {0, 1}m is O(m) in expectation.

Proof. We note that the machine from the above construction yields a configuration
graph where the nodes can be partitioned into layers such that the nodes in layer i
are only neighbors of the nodes in layers i− 1 and i+ 1. Additionally, each node in
an internal layer has two edges to nodes in the layer before and after it. Thus, the
machine will evolve according to an unbiased random walk over the layers of the graph,
which is an unbiased walk on a line of length O(T +n). Starting from any distribution
over nodes on this line, a continuous time random walk will have probability density
at least 1/4 on the layers where nodes have the desired metadata value after time
that is Θ(T 2 + n2). Thus, by waiting this amount of time between measurements, we
get a ≥ 1/4 probability that each measurement will give the desired metadata value.
Each measurement before a sample is produced has a constant energetic costs and
measuring the sample has an energetic cost of m. Thus, the overall energetic cost is
O(m) in expectation.

Within the framework established in Definition 5.4, since a device needs to
measure a sample from D to produce each output, this energy cost is asymptotically
optimal. In fact, the only way for such a protocol to have an asymptotically lower
energy cost is if after taking each measurement, the observer can absorb heat from the
environment as the mutual information between the observed sample and the state of
the machine drops. This heat could then be released later to erase recorded samples.

5.4 Monte Carlo sampler

In contrast to the Las Vegas sampler, a Monte Carlo sampler produces a new
sample after each observation. However, this comes with an unavoidable price that
the samples are correlated with one another.

205

Definition 5.10. Let M be a Brownian computer with a free energy function ∆G
where each configuration A ∈ Σ has can be represented as a tuple of registers
(W,M, (O−1, O1)) where w is the internal state of the machine, m are measurable
metadata bits, and (O−1, O1) is a pair of potential outputs. We say that M is a Monte
Carlo sampler for a distribution D if there is a τ > 0 such that for any constant c > 0
the outputs of the following protocol, conditioned on any choice of previous outputs
from this protocol and any initial state, come from a distribution D′ such that the
total variation distance between D and D′ is at most εc:

PMC :
repeat:

Wait(cτ)
if(Measure((W,M, (O−1, O1))→M) = −1):

output(Measure((W,M, (O−1, O1))→ O−1))
else:

output(Measure((W,M, (O−1, O1))→ O1))

While the Monte Carlo sampler cannot guarantee the independence of its
samples, it instead promises a new sample that is close to independent after each
observation. Our construction achieves this by physically coupling two independent
devices M−1,M1 such that when one device is performing computation, the other stores
a sample from the target distribution in its output register O−1 or O1. By reading
a metadata value M ∈ {−1, 1} we know that Mm is the one currently containing
output.

The accuracy of a Monte Carlo sampler can be quantified as follows:

Definition 5.11. A Monte Carlo sampler is (ε, T)-accurate for a distribution D if
when τ ≥ T , for any distribution over previous outputs of the protocol, the output of
the next sample generated comes from a distribution D′ such that the total variation
distance between D and D′ is at most εc.

As the parameter c in the protocol increases, the samples of a Monte Carlo
sampler become closer to the true distribution. If the observer allows the machine to

206

reach its ground state before making a sample, then that sample would come from
the desired distribution.

5.4.1 Construction

Again, we start with a reversible Turing machine M computing a D-generator
using inputs over {0, 1}n. The configuration graph of this Turing machine can be
described as a collection of 2n chains. We assume that M runs in at most T steps on
all inputs.

Our modified machine M∗ will have a layered configuration graph where each
layer describes the state of each submachine M−1,M1. Moving from layer Li to Li+1

will advance the state of M1 and reverse the state of M−1. Figure 5.3 gives an example
of the configuration graph for our construction acting on the trivial machine M with
a single bit of input and no machine transitions. The configuration graph for our full
construction is illustrated schematically in Figure 5.4. Below we describe how our
Monte Carlo sampler M∗ is constructed from M.

We will start my constructing machine M1 and then discuss how it can be
“linked” to a machine M−1.

Adding the output holding region For the Monte Carlo construction to work as
intended, it is vital that M1 has at least as many states with a computed sample as
without. That way when it becomes coupled to M−1, one of the two machines will
always have an output. As was the case for the Las Vegas construction, we achieve
this with the help of counters. One counter will be used to ensure that all inputs yield
computational paths (chains) of the same length while another ensures that there are
sufficient states containing outputs at the end of each chain.

We can implement this in a Turing machine as follows:

207

Figure 5.3: Our Monte Carlo construction applied to a general machine with no
transition rules and a single bit of input. Each node in the graph is a pair of nodes in
the same column of the sub-machines.

Figure 5.4: Monte Carlo: Each node in the graph is a pair of nodes from the sub-
machines.

208

Let Tcomp be the least power of two larger than T and Tout be the least power
of two larger than Tcomp + r. We will augment M with a computation counting
tape of length log2 Tcomp and an output counting tape of length log2 Tout each
initialized to the all zeroes string. By introducing the same set of transitions
described in the ‘output holding region’ part of Section 5.3, we can appropriately
elongate the lengths of the chains in the general machine.

We call the machine with these additional tapes and rules M′
1.

Adding the randomizer We will use the same randomizer construction as in
Section 5.3 to create a butterfly graph over states where a random walk from the
leftmost node to the rightmost node always yields a uniform distribution over the
first n bits of the string. This gives the same set of rules as were described in the
similar paragraph of Section 5.3, including the new initial starting configuration of
the machine with tape head state αr and the head of the machine to the left of the
input tape.

Linking the randomizer and the computation Unlike in Section 5.3, we will
not require additional states to the left of the randomizer. Instead, we simply need to
connect the nodes at the right end of the randomizer to the chains representing the
computation. Again, there is one node on the right of the randomizer corresponding
to each bit-string of length n + 1, which gives us two nodes corresponding to each
bit-string b of length n. As shown in Figure 5.4, on the right side of the randomizer,
for each bitstring b of length n, we add two copies of the chain in M′

1 corresponding to
input b and connect their starting configurations to both of the nodes in the randomizer
corresponding to input b. We finally add edges that link the node for step t in each
of these chains to the node for step t + 1 in the other chain. Doing this gives us a
layered graph where each node has degree zero or two in each direction, so a random
walk on this graph behaves like a one-dimensional random walk on the layers.

We can implement these changes in the Turing machine as follows:

209

We will have two copies of M′
1 denoted as M0

1, and M1
1. Each configuration B will

be denoted B0, and B1 for these respective machines. We will start constructing
M1 by combining the states and transition rules of M0

1, and M1
1. Now to connect

the states of the two machines, we will add the rules we defined above for the
randomizer and change the initial configuration to start in the state αr with the
head to the left of the input tape.

All that remains is to allow the states in M0
1 / M1

1 to transition to one
another so that all nodes in the configuration graph have either 0 or 2 left and
right neighbors. We can achieve this by taking each transition rule from each of
these machines and making a copy of it that maps to the equivalent state in the
other machine. For example if M′

1 had the transition rule B → (C,R) then we
would add the four rules:

B0 → (C1, R) B1 → (C0, R)

Unlike in the Las-Vegas construction, we will add no additional transitions
interacting with head configurations A0 and A1. These states now prevent any
computation from occurring to the left of the randomizer. This completes our
Turing machine construction of M1.

Now we need to combine our submachines to get M∗.

Combining the submachines Our final machine M∗ will have the same number of
layers as M1, but quadratically many states per layer. Incrementing layers corresponds
to simulating forwards computation on M1 and backwards computation on M−1. Each
layer of M∗ corresponds to a tensor product of the configurations for submachines
M1,M−1 at that layer. Since the output holding regions of submachines M1,M−1

each contain over half the layers in the overall graph, at any given layer, at least one
of the two machines contains an output.

We can implement this machine as a Turing machine with the following
modifications:

210

Let M1 = (S1,Σ, f1) be the machine created above and M−1 = (S−1,Σ, f−1)
be a copy of that machine with a distinct set of configurations for the head.a
We will build machine M∗ = (S1 × S−1,Σ, f ∗) that combines these machines.
This machine will have two copies of each tape in M1 that are used for running
instructions from the different submachines. Additionally, the state of the head
of M∗ will now be a product of the states of heads for M1,M−1. For each pair
of transition rules from f1 and f−1, f ∗ has a transition rule that implements
the rule from f1 forwards and the rule from f−1 backwards.b Then the initial
state of M∗ would correspond to some initial configuration of M1 and a terminal
configuration of M−1. The generated machine M∗ has a state space exactly like
that of the general Monte Carlo sampler we described above.

aNote that this M−1 does not move in reverse, we will make it do so when adding these
configurations and transitions to M∗.

bFor example if these were one tape Turing machines, f1 contained transition (A1, α) →
(B1, β), and f−1 contained the transition (C−1, γ)→ (D−1, δ) then f∗ would have the transition
((A1, D−1), (α, δ))→ ((B1, C−1), (β, γ)).

The metadata values of our construction can be defined such that when submachine
M1 has a head configuration indicating that it is in the output holding region, the
metadata value of M∗ is 1. Otherwise, we know that submachine M−1 must be in an
output holding region, and we set the metadata value to −1. Reading the metadata
bit informs which submachine’s output tape currently contains a sample from the
desired distribution.

The sampling procedure We let M∗ be the machine constructed above. We will
now give a general strategy for an observer to measure M∗ to get samples from the
distribution D. The observer waits Θ(T 2) then measures the metadata bit. Depending
on the received value, they then measure and record the value stored in one of two
output tapes.

The configuration graph of our construction has diameter O(T + n). Thus
waiting time Θ(T 2 + n2) between samples is sufficient for there to be 1/2 probability
that the random walk has crossed the randomizers of both submachines.

Theorem 5.12. Let M be a reversible Turing machine that computes a D-sampler

211

with n input bits that runs in time at most T on all inputs. Then applying the above
construction and procedure to M yields a Brownian computer M∗ that when augmented
with the constant energy function yields a (1/2,Θ(T 2 + n2))-accurate Monte Carlo
sampler for D. Moreover, the energetic cost of each sample generated from M∗ when
the support of D is {0, 1}m is always O(m).

Proof. As with the Las Vegas construction, we note that the machine from the above
construction yields a configuration graph where the nodes can be partitioned into
layers such that the nodes in layer i are only neighbors of the nodes in layers i − 1
and i+ 1. Additionally, each node in an internal layer has two edges to nodes in the
layer before and after it. Thus, the machine will evolve according to an unbiased
random walk over the layers of the graph, which is an unbiased walk on a line of
length O(T + n). Starting from any distribution over nodes on this line, a continuous
time random walk will have probability at least 1/2 of hitting both ends of the line
after O(T +n2) time. Thus after c times as much time, the probability of hitting both
ends of the line go up to 1− 1/2c. By the construction of our randomizer, this event
indicates that the next observed sample will come from distribution D, and so the
total variation distance between D and the true sampled distribution D′ is at most
1/2c. Therefore, M∗ is a 1/2-accurate Las Vegas sampler for D. The energetic costs
of each sample come from measuring the metadata bits and then the output in the
appropriate register, which is always O(m).

5.5 Function computation

In this section, we define Brownian computers that compute functions, a more
standard form of computation than the sampling algorithms in previous sections. We
describe how a Turing machine M (or any other reasonable computational device)
computing a function f : {0, 1}n → {0, 1}m can be modified to compute f with an
energy cost that only scales linearly in input length n and output length m.

212

Definition 5.13. Let M be a machine where each configuration A ∈ Σ has can be
represented as a tuple of registers (I,W,M,O) where I is the input on which M is
performing computation, W is the internal state of the machine, M is a metadata
register, and O is an output. We say that M is a thermodynamic computer for
a function f : {0, 1}n → {0, 1}m if there is a τ > 0 and a mapping from pairs
(x1, x2) ∈ {0, 1}2n to a free energy function ∆Gx1,x2 such that, starting from any
configuration, the following protocol outputs the pair (x, f(x)):

PT C(x):
Wait(τ)
while(Measure((I,W,M,O)→M) = 0):

Wait(τ)
(i,m) := Measure((I,W,M,O)→ (I,M))
Set Energy(∆Gi,x)
Wait(τ)
while(Measure((I,W,M,O)→M) ̸= −m):

Wait(τ)
output(Measure((I,W,M,O)→ (I, O)))

Definition 5.14. A thermodynamic computer is (δ, T)-efficient if, for any distribution
over states at the beginning of the protocol, the probability of leaving each while loop
on every iteration when τ ≥ T is at least δ. We say the computer is efficient if it is
(δ, T)-efficient for some constant δ bounded away from zero.

When designing machines for sampling, we wanted our states to all have equal
free energy. This was important so that — when driven by Brownian motion — the
device would simulate an unbiased random walk over the state space. However for
function computation, it is vital that we can change the free energies of states in a way
to bias us towards the intended computational path. Ensuring that our hypothetical
devices could be built, we will want to use free energy functions composed of a sum of
‘local’ terms. In particular, for our construction, we will only be using choices of ∆G
that are a sum of terms for each bit of the state of the input tape. Additionally, we
will require our device to end up in a distribution over states with at least as much

213

∆G as the initial configuration. This way the total amount of free energy within the
device does not decrease on each use. For our construction, we will allow ∆G to assign
the value ∞ to states it cannot currently be in. However, we will also mention how it
would be possible to modify the construction so that all states have finite energies in
Section 5.6.

5.5.1 Construction

Our construction uses the exact same modifications to a reversible Turing
machine M as in Section 5.3 to produce the machine M∗ (notably the computation
and output counters), except with the following change:

The randomizer now uses four symbols to denote the input to the tape: 0, 1, 0̂, 1̂.
The input tape starts with the value 0 and the randomizer is instead defined with
the following set of rules to change the input on the tape:

(αr, 0)→ (βr, 0̂) (αr, 0)→ (βr, 1̂)
(αr, 1)→ (βr, 0̂) (αr, 1)→ (βr, 1̂)
(αr,)→ (A0,) (αr,)→ (A1,)
(A0,)→ (βr,) (A1,)→ (βr,)

βr → (αr, R)

These changed rules to describe the randomizer result in the chirally inverted
machine (see ‘linking the randomizer and the computation’ in Section 5.3) op-
erating on an input composed of 0, 1 while the other machine operates on an
input composed of 0̂, 1̂. This change will be useful when defining our free energy
function. We then need to modify the rules of the Turing machine so that 0̂, 1̂ are
treated as equivalent to 0, 1 on the input tape. This can be done by modifying
the rules of M0

1 / M1
1 so that they use 0̂, 1̂ instead of 0, 1 for all of their rules.

The configuration graph of this machine is illustrated in Figure 5.5. While we
assumed that M was a D-sampler in Section 5.3, all the results would have applied
equally well to a Turing machine computing some function f . For simplicity, we will
assume that M has three tapes (i, w, o) for the input, work, and output respectively.
While M∗ has more than these three tapes, we will think of the additional tapes as

214

Figure 5.5: The configuration graph of our machine M∗ for function computation.

being part of the unqueried W register, and thus we will only ever query the input,
output tapes and the metadata register of M∗.

The free energy function Now that we have specified our machine M∗, all that
remains is to pick a free energy function ∆Gi,x. This free energy function should
map the measured value of the input register I = i1, . . . , in (read from left to right)
and the target input x = x1, . . . , xn to output a free energy function ∆G such
that when we later observe the machine we will have a 1/4 chance of it being in a
configuration with the desired output. Moreover, we need to pick such a ∆G such
that the energy of the system does not decrease as the machine reaches equilibrium.
Let b : {0, 1, 0̂, 1̂} → {0, 1} project an input tape element onto its logical value and
h : {0, 1, 0̂, 1̂} → {0, 1} project an input tape element onto whether that element has
a hat. By Definition 5.13, we know that i has the same value of h(ij) for all j. If
h(ij) = 0 then we will do this with the following free energy function, which assigns
free energies that depend only on the value v = v1, . . . , vn stored in that states input
tape (from left to right):

∆G0
i,x(v) =

∑
j∈[n]


0 b(vj) = b(ij) and h(vj) = 0
0 b(vj) = b(xj) and h(vj) = 1
∞ otherwise

(5.3)

215

When h(ij) = 1 we instead use the following free energy function:

∆G1
i,x(v) =

∑
j∈[n]


0 b(vj) = b(ij) and h(vj) = 1
0 b(vj) = b(xn−j+1) and h(vj) = 0
∞ otherwise

(5.4)

When h(ij) = 1 we need to invert x for it to be interpreted as the correct input. Our
choice of ∆G assigns a free energy of zero to all states where the input register agrees
with its current value on the same side of the randomizer and the desired input on
the other side of the randomizer. Within the randomizer, the path between these
inputs also has zero free energy. However, every other state in the graph has infinite
energy. Thus, per Definition 5.2 our device will never take such a transition. Since
there is exactly one state with zero energy per layer,5 The system evolves according
to a random walk on the layers. Per the same argument as in Theorem 5.9, after time
Θ(T 2 + n2), the device will be in a state with at least 1/4 probability of containing
the necessary metadata values to proceed through the while loops.

Theorem 5.15. Given an arbitrary Turing machine M that computes a function
f : {0, 1}n → {0, 1}m for some fixed n and halts in at most T time on all inputs, we
can build a (1/4,Θ(T 2 + n2))-efficient thermodynamic computer that also computes
f . Moreover, the energetic cost of each output generated from M∗ is O(n + m) in
expectation.

For this result, the expected energetic costs scale linearly in both n and m,
since both the input and output registers need to be measured a constant number of
times for this protocol. Since we leave the free energy of the machine’s state the same
when we change the energy landscape, this has no energetic cost.

If we prevent our protocol from making any assumptions on the initial distri-
bution over states, measuring the full value of the input register is needed to define

5Technically there are two states per layer outside the randomizer due to M0
1 / M1

1 or M0
1 / M1

1,
but we could either remove these states from the construction or (equivalently) always set the free
energy of states corresponding to M1

1 / M1
1 to infinity.

216

4

1

2

3

Figure 5.6: An irreversible computation. States 1, 2 are inputs while 3, 4 are false
paths that do not come from an input.

the correct free energy function. However, if the free energy of states is not changed
between uses, measuring the metadata bit is sufficient to learn the current value of
the input register. Thus on repeated uses, it is no longer necessary to measure the full
register.

5.6 Discussion

On the need for reversibility Our constructions start with the assumption that
the machine M is a logically reversible Turing machine. Thanks to constructions
like those of (Bennett, 1989), we can safely make this assumption with only small
overheads to the time and space complexities of M. It is natural to ask whether
instead we can start with irreversible computation, and adjust ∆G values of states so
that we obtain an unbiased random walk over the layers. Unfortunately, as Figure 5.6
shows, a random walk over the layers will hit obstacles called false paths: states that
are not reachable from any valid input by applying the irreversible transition function
f . As in general there can be exponentially many such false paths in the length of
the computation, it could take an exponential time for the machine to return to the
randomizer. This, in turn, could result in an exponential increase in the time the
observer needs to wait before measuring the device.

Unknown bounds on running time Our Las Vegas, Monte Carlo, and thermody-
namic computer constructions make the assumption that for the input machine M,
the quantity T representing the maximum number of steps for M to halt on any input

217

of length n is known to our construction. While we are able to prove upper bounds
on the running time for specific algorithms, as pointed out in (Norton, 2013), this is
in general impossible for an arbitrary Turing machine M due to the undecidability of
the halting problem. There are ways to modify our constructions to work when T is
unknown, but they are less than satisfactory.

If we know that M takes the same number of steps to run on all length n

inputs, then we can modify M by adding a new tape that counts the number of
steps during the computation. The length of the output holding region can then be
programmatically determined by performing arithmetic on this tape and then having it
count down to make the output-holding states. If M takes a different number of steps
on different inputs then the probabilities of being in each output holding region may
be different. This leads to a machine that gives samples from a different distribution
from the one desired.

Without this assumption, it is still possible to define a sampler when different
inputs require differing number of steps. We can do this my modifying M so that it
evaluates on all inputs of length n before writing to the output tape. By doing this,
we can artificially ensure that M takes the same number of steps on all inputs, and
we can then use the above method to ensure the correct number of output-holding
states. This both results in an exponential in n blowup of the time between samples
and causes issues, as without a universal upper bound on T , the observer cannot know
how long they need to wait before they will have a constant probability of obtaining a
new sample.

Removing additional assumptions In Section 5.5 we relied on two physically
unrealistic assumptions. First we assumed that we can set ∆G to ∞ for some states.
In reality, it is sufficient to set the free energies of these states to a sufficiently large
quantity that it is unlikely for the system to drift into such a state. In fact, if we are
okay with only observing the intended output with a constant probability, we can

218

replace the ∞ with O(log n) in Equations (5.3) and (5.4). When doing so, the ground
state of M∗ will have constant probability mass on the intended output. However, it
becomes less clear how long the observer would need to wait before each measurement.

Second we assumed that an observer can change the state of the system as
an immediate response to a measurement. In reality, we should assume that some
time δt passes between any actions of the observer. This could result in us increasing
the ∆G of the machines state if it changes between measurement and setting the new
energy function. If we set ∆G of some states to ∞ this would be a major problem, as
then changing ∆G would require infinite work if the device drifts into such a state.
However, if we make the energy values finite, we can see that the cost of changing
∆G must decrease as the length of the computation path T increases. This is because
as the computation gets longer, it becomes less likely that in δt time the machine
can change from one output holding region to a state corresponding to a different
input tape value. Therefore, adding δt time between measurements will not cause the
energetic costs of our device to exceed O(n). Adding time between observer actions
might also cause minor issues with Definitions 5.6 and 5.10 making back to back
measurements of the state. These protocols can either be fixed by combining these
measurements into a single operation or accepting a small rate of error that decreases
with T .

219

Chapter 6: The computational complexity of
optimizing the thermodynamics of Boolean circuits

6.1 Introduction

For a more detailed background on the general connections between thermo-
dynamics and computation, see Section 5.1. Here, we discuss specific connections
between thermodynamics and Boolean circuits. Prior works have investigated the
entropy production of Boolean circuits. In (Wolpert and Kolchinsky, 2020) the authors
gave the first stochastic thermodynamics model of Boolean circuits and examined
how locality of gate operations induces unavoidable thermodynamic costs, even if the
behavior of the overall circuit is logically reversible. This work and model is expanded
on by (Yadav et al., 2024), where the authors consider more general mismatch costs
caused by running Boolean circuits on suboptimal input distributions. These works
are primarily concerned with characterizing the entropic costs of Boolean circuits with
a fixed physical implementation.

We extend on the works of (Wolpert and Kolchinsky, 2020; Yadav et al.,
2024) by considering what happens when the logical behavior of a Boolean circuit
is fixed, but we are allowed to change details of its physical implementation. In
particular, we extend their models of Boolean circuits by adding a programmable
‘heat function’ to each gate which characterizes thermodynamic details of that gates
physical implementation. While our extensions of their model are obvious from a
physics perspective, this framework naturally leads itself to many interesting computer
science questions regarding the thermodynamics of Boolean circuits. In this dissertation
we tackle one such question: what is the computational complexity of optimizing heat
functions in a Boolean circuit? In this work we show that, in general, this task is
intractable. Given a Boolean circuit as input, we show that it is PP -hard to determine
the optimal heat function for gates when considering a uniform distribution of inputs

220

to the overall circuit. Moreover, unless P = NP , we show that even approximately
optimizing these heat functions is impossible in polynomial time.

6.2 Preliminaries

We start with some basic facts and definitions.

Definition 6.1. Let D be a distribution over a set D and x ∈ D. Then we use PrD[x]
to denote the probability of sampling x from the distribution D.

Definition 6.2. Let D be a distribution over a set D. Then supp(D) is the set of all
x ∈ D such that PrD[x] > 0.

Definition 6.3. Let D be a distribution over a set D and f : D → R be a function.
Then f(D) is the unique distribution where for all y ∈ R:

Pr
f(D)

[y] =
∑

x∈f−1(y)
Pr
D

[x].

If m is a mapping that takes each x ∈ D to a distribution Dx over R then m(D) is
the unique distribution where for all y ∈ R:

Pr
m(D)

[y] =
∑

x∈m−1(y)
Pr
D

[x] Pr
Dx

[y]

Definition 6.4. Let D be a distribution over a set D. Then the entropy of D (denoted
S(D)) is given by:

S(D) =
∑

x∈supp(D)
−Pr

D
[x] log2(Pr

D
[x])

Definition 6.5. Let D,D′ be two distributions over a set D. Then the Kullback-
Leibler (KL) divergence between D and D′ is given by:

DKL(D||D′) =
∑

x∈supp(D)
Pr
D

[x] log PrD[x]
PrD′[x]

If there is an x ∈ supp(D) such that x ̸∈ supp(D′) then DKL(D||D′) is infinite.

221

Proposition 6.6 (Data processing inequality, (Cover, 2006)). Let f : D → R be
an arbitrary function and D,D′ be two distributions over D. If supp(D) ⊆ supp(D′),
then:

DKL(D||D′) ≥ DKL(f(D)||f(D′)).

Definition 6.7. The mutual information between random variables X, Y is denoted:

I(X;Y) = S(X) + S(Y)− S(X,Y)

6.2.1 Thermodynamics of Boolean circuits

The entropy production of a computation depends both on the physical imple-
mentation of the computer and on the desired distribution over inputs. Therefore, it is
natural to ask the following question: can we optimize a physical computational device
to run as efficiently as possible on a target input distribution? This question falls
under the study of optimal processes, or processes that achieve minimal dissipation
subject to physical constraints (Hasegawa et al., 2010; Parrondo et al., 2015). A
careful reader may notice that we specify minimizing the entropy flow (EF) rather
than the entropy production (EP). As we saw earlier in Equation (5.2), if the logical
mapping of a process is fixed, then the entropy production is always minimized by
minimizing the entropy flow. We chose to express our results in this section in terms
of entropy flow, as minimizing the flow of heat (EF) out of the system is ultimately
how we minimize the entropy production.

Irreversibly driven computation In Section 5.2 we described how heat must
be released to drive computation in the forward direction. In what follows, we will
simplify our analysis by considering processes that move irreversibly forwards in time.
This means that we are considering physical processes with infinite energy barriers
and energy gaps between states which, as is common in the thermodynamics literature
(i.e. (Wolpert and Kolchinsky, 2020)), means that the energetic costs we describe
here should be viewed as lower bounds. Instead of assigning free energies to the

222

states of our system and having it evolve according to a random walk, we will require
it to dissipate heat as it evolves in a way that is consistent with the second law of
thermodynamics. The energetic costs of computation can be decomposed into two
parts: (1) the energy required to counteract decreases in entropy (2) additional energy
needed to drive the computation forwards. Of these costs, (1) depends on the logical
and physical behavior of the computation and the distribution over inputs and will
be the cost of interest in this dissertation. On the other hand, (2) represents costs
that depend on the desired speed and forward drive of the computation, which can be
made zero in principle via a quasi-static process or by running the computation with
no forward bias (Wolpert, 2019). More formally to drive computation ‘irreversibly
forwards’ we require that any process mapping each state x ∈ D to a distribution over
states m(x) must have an associated heat function Q : D → (R ∪ {∞}) that, for any
distribution D over D, satisfies:

S(D)− S(m(D)) ≤
∑

x∈supp(D)
Pr
D

[x]Q(x) (6.1)

The function Q(x) represents how much heat the process must dissipate (in expectation)
to perform its mapping when it receives the input x. Here we allow Q(x) to be infinite
only when the process can never actually be initialized to state x.

The value S(D)− S(m(D)) is also known as the Landauer cost (also denoted
Lm(D)) of computing m on input distribution D. Again we will think of energy
(heat) as being expressed in units such that Boltzmann’s constant k times the fixed
temperature of the system is one. Prior works have used a similar formulation of
heat to express thermodynamic costs in Boolean circuits (Wolpert and Kolchinsky,
2020; Yadav et al., 2024). However, these works only require that Equation (6.1)
holds for the true distribution over inputs D. This is primarily because they are
interested in quantifying thermodynamic costs for a given choice of Q rather than
optimizing this over the set of functions that follow Equation (6.1). On the other hand,
we are interested in how the underlying implementation of a fixed Boolean circuit
can be optimized to minimize its energetic costs. For our purposes, it is important

223

that Equation (6.1) holds for all possible distributions over initial states; otherwise
carefully initializing the distribution and running the process irreversibly forwards
would decrease the entropy of the universe. When the inequality is tight this process
is thermodynamically reversible and has zero entropy production for the distribution
D. This describes a setting where applying f and its inverse are equally likely, which
satisfies the costs of type (1), and so any additional heat dissipation would drive the
process forwards.

Boolean circuits Here we are going to discuss the computational complexity of
defining optimal processes for the evaluation of Boolean circuits.

Definition 6.8. A Boolean circuit C on n inputs with T gates and S wires is
described as an ordered set of T gates gt = (Dgt , f

gt) for t ∈ [1, T]. Each gate
specifies a set Dgt ⊆ [S] and a Boolean function f gt : {0, 1}Dgt → {0, 1}Dgt . On input
x1, . . . xn ∈ {0, 1}n the circuit starts in the state C0 ∈ {0, 1}S where C0[i] = xi for
i ∈ [n] and C0[i] = 0 for i ∈ [S] \ [n]. The state of the circuit at time t is given
by applying f gt to the state of the circuit at time t − 1. More formally, if the gate
operates on wires Dgt = d1, . . . , dk then:

Ct[i] =
f gt(Ct−1[d1], . . . ,Ct−1[dk]) i ∈ Dgt

Ct−1[i] otherwise

We say that wire i ∈ [S] of C evaluates to x ∈ {0, 1} when CT [i] = x.

Our definition of a Boolean circuit is analogous to the standard model of
quantum circuits. Gates perform local in place operations to update the values of their
inputs, which are stored in wires. We assume that inputs start in the first n wires with
the remaining wires initialized to 0. The final configuration of all wires is considered
the output of the Boolean circuit. In (Wolpert and Kolchinsky, 2020; Yadav et al.,
2024) the authors used a different model of Boolean circuits where information is
stored inside gates instead of wires. In their model a circuit is represented with a

224

DAG where the nodes represent gates and edges show the flow of information. Once
the parents of a gate have computed their output, the gate is then able to compute
its associated function, storing the value in its own state. Then that gate must erase
the states of its parent nodes to complete its computation. Our definition of Boolean
circuits is more general than that of (Wolpert and Kolchinsky, 2020; Yadav et al.,
2024). We can represent the action of a gate in their model with a gate that erases
the values stored in the inputs and writes the output into an initially zeroed wire.

When each gate gt in our circuit model performs its intended mapping on input
x ∈ {0, 1}Dgt , it releases Qgt(x) heat into the environment. For such a circuit to be
implementable, it is essential that the function Q associated with each gate obeys the
second law of thermodynamics for every possible input to the gate. We allow Q(x)
to be infinite on some x when the gate never receives that input. This allows us to,
for example, make a bit-erasure gate that dissipates not heat if it always receives the
same input. When discussing the details of a single gate gt, we will use D to refer to
{0, 1}Dgt , Q to refer to Qgt(x), and f to refer to f gt .

Definition 6.9. Let Q : D → R and f : D → D. Then Q is a valid heat function for
computing f if, for any distribution D over D, we have that:

Lf (D) ≤
∑

x∈supp(D)
Pr
D

[x]Q(x)

Proposition 6.10 (second law of thermodynamics). Let f : D → D denote the
transformation performed by a gate in a circuit. If Q : D → (R ∪ {∞}) denotes the
amount of heat released by that gate on input x ∈ D, then Q must be a valid heat
function for computing f .

Definition 6.11. The entropy flow (EF) of a gate that releases Q(x) heat on each
input x ∈ D when the input distribution is D is given by:

EF (D) =
∑

x∈supp(D)
Pr
D

[x]Q(x)

225

Following the convention of (Wolpert, 2019), we define the entropy flow as the
total flow of entropy out of the system. This is in contrast to much of the stochastic
thermodynamics literature, which defines it as the total flow of entropy into the
system.

Definition 6.12. The entropy production (EP) of a gate computing a function
f : D → D that releases Q(x) heat on each input x ∈ D when the input distribution
is D is given by:

EP (D) = S(f(D))− S(D) +
∑

x∈supp(D)
Pr
D

[x]Q(x) = EF (D)− Lf (D)

Corollary 6.13. The entropy production of any valid heat function for a gate is
non-negative on every input distribution.

Mismatch costs Previous works on the thermodynamic costs of Boolean circuits
have focused on mismatch costs as a source of entropy production. The mismatch cost
of a gate g in a Boolean circuit can be defined as follows (Yadav et al., 2024):

Definition 6.14. Let g be a gate in a Boolean circuit computing a function f that
releases Q(x) heat on input x ∈ D. Let D be a distribution1 over inputs to gate g
that minimizes its entropy production EP (D). Then the mismatch cost of running g
on input distribution D′ is given by:

MC(D′) = DKL(D′||D)−DKL(f(D′)||f(D))

Mismatch costs were first identified in (Kolchinsky and Wolpert, 2017) as a
source of entropy production caused by running a physical process on an unintended
input distribution. It is possible to decompose entropy production as a sum of the
mismatch costs and the entropy production on the best possible input distributions
over states that lead to each output.

1Note that this distribution need not be unique.

226

Proposition 6.15 ((Kolchinsky and Wolpert, 2017; Wolpert and Kolchinsky, 2020)).
Let g be a gate in a Boolean circuit computing a function f . Let Dy be the distribution
over inputs x to gate g where f(x) = y that minimizes its entropy production EP (Dy).
Then the entropy production of running g on input distribution D′ is given by:

EP (D′) = MC(D′) +
∑

y

Pr
f(D′)

[y]EP (Dy)

When the target distribution over inputs to a Boolean circuit is known, it
is always possible to pick a heat function Q : {0, 1}S → (R ∪ {∞}) for each gate
so that the mismatch cost is zero. But since we only allow the heat function of a
gate to depend on its inputs, there can be pairs of gates g and input distributions D

where any choice of heat function Q : {0, 1}Dgt → (R ∪ {∞}) will result in a positive
mismatch cost. Heat functions that are restricted to depend only on a gate’s inputs
must lead to optimal distributions when there is no correlation between a gate’s inputs
and the other wires. This leads to unavoidable mismatch costs (and in turn entropy
production) for fixed circuits caused by local erasure of correlated information. We
will show an example of this in more detail in Section 6.4. Such a restriction on
the heat functions of our gates comes from the assumption that Boolean circuits are
modular ; the behavior of each gate can only depend on the information presented
to it. In stochastic thermodynamics this is formalized with the notion of a solitary
process, or a process acting only on a subsystem of a state while the remaining state
is unchanged (Wolpert, 2019; Wolpert and Kolchinsky, 2020). By treating the gates
in our circuit as solitary processes, we can see that minimizing the entropy flow of a
fixed Boolean circuit depends only on minimizing the heat released by each gate on
its marginal input distribution.

In (Wolpert and Kolchinsky, 2020; Yadav et al., 2024) the authors are primarily
concerned with lower bounding the entropy production of Boolean circuits when the
heat functions for the individual gates are not fine-tuned for the true distribution over
inputs. These works are concerned with using mismatch costs to lower bound the

227

entropy production of circuits with suboptimal heat functions. We justify this setting
by showing that it is computationally infeasible to pick optimal heat functions for
gates in Boolean circuits.

6.2.2 Computational complexity

We aim to show that optimizing the thermodynamics of Boolean circuits is
a hard problem, but what exactly do we mean by hard? Complexity theory can be
used to sort problems into sets that characterize their difficulty. In this section, we
will mostly be concerned with the complexity classes NP and PP , which stands for
nondeterministic and probabilistic polynomial time respectively.

Definition 6.16. A nondeterministic Turing machine is a Turing machine M where
multiple rules can be applicable from any configuration. When a configuration has
multiple applicable rules, M applies each rule in a separate “computational path.”
During each time step, all computational paths advance according to the rules of the
Turing machine.

Definition 6.17. NP is the set of languages L where there exists a polynomial time
non-deterministic Turing machine with an accepting computational path when the
input x ∈ L.

Another way to view NP is the set of languages that can be efficiently verified.
A deterministic Turing machine can efficiently verify that a non-deterministic machine
M would accept an input x if it is told which path leads to M accepting x. Determining
if every problem in NP can be efficiently solved by a randomized Turing machine is a
major open problem in theoretical computer science (Cook, 1971).

Proposition 6.18 ((Cook, 1971)). Let LSAT be the set of Boolean circuits where
the first wire evaluates to 1 on some input. Then deciding membership in LSAT is a
NP -complete problem.

228

NP -completeness means that LSAT ∈ NP and that an efficient algorithm for
deciding membership in LSAT could be used to efficiently solve any other problem in
NP .

Definition 6.19 ((Gill, 1974)). PP is the set of languages L where there exists a
polynomial time non-deterministic Turing machine that accepts on at least 1/2 of
all computational paths when the input x ∈ L and accepts on less than 1/2 of all
computational paths when the input x ̸∈ L.

The complexity class PP is very powerful. Importantly the gap between the
number of accepting and rejecting paths can be arbitrarily small. In fact, PP is
equivalent to another class PostBQP , which captures polynomial time quantum
algorithms augmented with the ability to post-select on measurement outcomes
(Aaronson, 2005). For any fixed k, there is a language in PP that cannot be decided
by quantum circuits of size nk even with quantum advice (Aaronson, 2006; Yirka,
2024). Another example of a problem in PP is determining how often a Boolean
circuit produces a particular output on a random input.

Proposition 6.20 (implicit in (Valiant, 1979)). Let LBC/2 be the set of Boolean
circuits where the first wire evaluates to 1 on at least half of all inputs. Then deciding
membership in LBC/2 is a PP -complete problem.

We will prove the PP -hardness of optimizing Boolean circuits with a reduction
from this problem.

6.3 Optimal heat functions for known input distributions

To prove our main results, we need a key lemma relating the valid heat function
Q for a gate that minimizes its entropy flow for that gate’s distribution over inputs.

Lemma 6.21. Let f : D → D be an arbitrary Boolean function, D be the distribution
over D where for each x ∈ D let px = PrD[x]. This implies a distribution on the

229

outputs f(D). Let p′
y = Prf(D)[y]. Then the unique valid heat function for a gate

computing f with the least entropy flow on input distribution D is given by:

∀x ∈ D,Q(x) =
log2(p′

f(x)/px) px > 0
∞ px = 0

Proof. For Q to be a valid heat function (Definition 6.9) for computing f we need
that for all distributions D′ where PrD′ [x] = qx and Prf(D′)[y] = q′

y:

Lf (D′) =
∑

x∈supp(D′)
qx log2(1/qx)−

∑
y∈supp(f(D′))

q′
y log2(1/q′

y) ≤
∑

x∈supp(D′)
qxQ(x) (6.2)

The entropy flow is minimized when the above inequality is tight for the
distribution D, giving us the following additional constraint on the heat function:

Lf (D) =
∑

x∈supp(D)
px log2(1/px)−

∑
y∈supp(f(D))

p′
y log2(1/p′

y) =
∑

x∈supp(D)
pxQ(x) (6.3)

Picking Q(x) as described in this lemma statement satisfies Equation (6.3). We now
show that Equation (6.2) is also satisfied by this choice of Q. If supp(D′) ⊃ supp(D)
then there must be some x ∈ supp(D′) such that Q(x) =∞. Since Lf (D′) is always
finite, such choices of D′ trivially satisfy Equation (6.2). When supp(D′) ⊆ supp(D):

Lf (D′) =
∑

x∈supp(D′)
qx log2(1/qx)−

∑
y∈supp(f(D′))

q′
y log2(1/q′

y)

≤ DKL(D′||D)−DKL(f(D′)||f(D)) +
∑

x∈supp(D′)
qx log2(1/qx)−

∑
y∈supp(f(D′))

q′
y log2(1/q′

y)

=
∑

x∈supp(D′)
qx log2(1/px)−

∑
y∈supp(f(D′))

q′
y log2(1/p′

y)

=
∑

x∈supp(D′)
qx log2(p′

f(x)/px)

=
∑

x∈supp(D′)
qxQ(x)

where the inequality follows from Proposition 6.6.

Now that we have established that this Q works, we want to show that it is the
unique choice satisfying Equations (6.2) and (6.3). Let Q̂ be another heat function

230

that satisfies Equations (6.2) and (6.3). Then by Equation (6.3) we get that:

∑
x∈supp(D)

px(Q(x)− Q̂(x)) = 0

Also when we apply Equation (6.2) with D′ to be a Dirac Delta distribution (i.e.
qx = 1 and all other qx′ = 0) we get that:

Q̂(x) ≥ Q(x)

The only way to satisfy these constraints is when Q̂ = Q.

Corollary 6.22. Let D be the distribution over D where for each x ∈ D let px = PrD[x].
Let f : D → D be a constant-valued function. Then the unique valid heat function for
a gate computing f with the least entropy flow on input distribution D is given by:

∀x ∈ D,Q(x) =
log2(1/px) px > 0
∞ px = 0

Corollary 6.23. Let Q : D → (R ∪∞) be the valid heat function for computing a
constant-valued function f : D → D with the least entropy flow on some unknown
input distribution D. Then:

∀x ∈ D,Pr
D

[x] =
2−Q(x) Q(x) ∈ R

0 Q(x) =∞

6.4 Logically reversible operations may require entropy pro-
duction

Here we present an example justifying that logically reversible computation
may result in positive entropy production depending on the physical implementation.
This is a well known result in the stochastic thermodynamics literature, and has
already been extensively studied within the context of Boolean circuits (Wolpert and
Kolchinsky, 2020). However, we believe this more formal example will be valuable to
readers who are not intimately familiar with the field.

231

Lemma 6.24. Let X, Y be a partition of [S] and Ct−1[X],Ct−1[Y] ∼ Dt−1 be random
variables for the state of wires X, Y after applying gate t− 1 in circuit C. Then if gate
gt computes the constant valued function f gt : {0, 1}X → {0}X , the entropy production
of applying gt as the next gate in C is at least I(Ct−1[X];Ct−1[Y]).

Proof. Let DX be the marginal distribution of random variable Ct−1[X] according to
distribution Dt−1. Then by Corollary 6.22, the optimal heat function for gate gt is
Q(x) = log2(1/PrDX

[x]). So, the entropy flow of implementing this gate is at least:

EF ≥
∑

x∈supp(DX)
Pr
DX

[x]Q(x) = S(Ct−1[X])

Let Dt be the distribution over states of the circuit after applying gt. Since Ct−1[Y] is
unchanged by applying gt, we know that according to Definition 6.12:

EP = EF + S(Dt)− S(Dt−1)

≥ S(Ct−1[X]) + S(Dt)− S(Dt−1)

= S(Ct−1[X]) + S(Ct−1[Y])− S(Ct−1[X],Ct−1[Y])

= I(Ct−1[X];Ct−1[Y])

as desired.

Intuitively, this bound comes from the fact that gate gt cannot use a heat
function whose values depend on non-input wires. Since gt needs a valid heat function
in accordance with Definition 6.9, it needs to dissipate enough heat to obey the second
law of thermodynamics even when there are no correlations between sets of wires X
and Y . Thus, when C forces correlations between these wires, there will be positive
entropy production. This argument can be generalized past erasure gates. More
generally, the entropy production of a gate is lower bounded by the drop of mutual
information between the input wires to that gate and the state of the rest of the
circuit (Wolpert and Kolchinsky, 2020). While the choice of f gt is not an injective
function, depending on the details of C, its action on the overall state of the circuit

232

might be logically reversible. For example, if gt erased values that are copied in other
wires, its action would be logically reversible. Yet Lemma 6.24 shows that gt must
have positive entropy production on some input distributions.

Remark 6.1. A logically reversible operation may have positive entropy production
depending on its physical implementation and input distribution.

6.5 PP-hardness of minimizing entropy flow

Here is the language we will prove to be PP -complete.

Definition 6.25. The Boolean circuit entropy flow minimization language LEF min is
a subset of tuples (C, g, x, v) containing Boolean circuit C with n input wires, a gate g
of that circuit, an assignment x to the inputs of g, and a rational number v. A tuple
is in LEF min iff when the circuit C receives the uniform distribution over its input
wires, the valid heat function for C that minimizes the entropy flow releases at least
log2(v) heat on input x.

Theorem 6.26. LEF min is a PP -complete language.

We break the proof of Theorem 6.26 into two parts: containment in PP and
completeness.

Lemma 6.27. LEF min ∈ PP

Proof. Consider an input (C, g, x, v). Per Lemma 6.21 the entropy flow is minimized
by a heat function that dissipates log2(p′

f(x)/px) heat on input x. Thus we need to
design a polynomial time nondeterministic program (Turing machine) that accepts on
half of the computational paths when v ≤ p′

f(x)/px. Rewriting this give us that we
want:

vpx ≤ p′
f(x)

233

Let p′
¬x∧f(x) = p′

f(x) − px denote the probability that the gate outputs f(x) when the
input is not x. Then we can rewrite the above as:

(v − 1)px ≤ p′
¬x∧f(x)

Since v − 1 is a rational number we can rewrite it as a/b for a, b ∈ Z. Therefore,
we want to reach an accepting state on at least half of the computational paths
exactly for the inputs where a · px ≤ b · p′

¬x∧f(x). We can do this with the following
nondeterministic program: non-deterministically pick an input y ∈ {0, 1}n for the
Boolean circuit. Then evaluate the circuit until right before the application of gate
g. Let y be the input to gate g. If x = y then the program non-deterministically
branches a times, rejecting on all of these branches. If f(x) = f(y) then the program
non-deterministically branches b times, accepting on all of these branches. Otherwise
the program non-deterministically branches once, accepting on one branch while
rejecting on the other.

Lemma 6.28. LEF min is PP -hard.

Proof. We will prove this with a Karp reduction LBC/2 ≤p LEF min. Let C be an input
to LBC/2 where the first wire evaluates to 1 with some unknown probability p1. We
will augment C with a single input erasure gate g on the first wire applied after all
the gates in C. Let this new circuit be called C′. Then our input to LEF min is the
tuple (C, g, 0, 2). Per Corollary 6.22, the minimum entropy flow heat function for gate
g should dissipate log2(1/(1− p1)) heat on input 0. This value is at least 1 exactly
when p1 ≥ 1

2 .

In fact, we can extend our result to other input distributions that can be
efficiently sampled.

Corollary 6.29. If we augment the language LEF min with an input distribution D

specified by an efficiently computable D-generator, then the problem remains PP -
complete.

234

Changing the language in this way does not change the proof of Lemma 6.28
and the algorithm in Lemma 6.27 can be easily modified to first apply the D-generator
to a uniform input to obtain inputs from the desired distribution D for the circuit.

6.6 Hardness of approximation

In Section 6.5 we showed that computing the optimal heat function for gates
in a Boolean circuit is hard. Our proof hinges on the difficulty of exactly determining
the fraction of inputs that cause a wire to produce the output value 1. However, one
might hope that this complexity can be avoided if we merely want to approximate the
optimal heat function. Let Dt be the marginal distribution over {0, 1}D

gt
induced by

the uniform distribution over inputs before the application of gate gt. Let EFQt [Dt] be
the entropy flow produced by the optimal heat function Qt for gate gt. Without direct
access to Dt, can we efficiently construct a heat function Q̂t such that its entropy
flow EFQ̂t

[Dt] ≤ (1 + ε)EFQt [Dt] for a constant ε > 0? An efficient algorithm for
constructing such a Q̂t would let us design Boolean circuits that dissipate at most
(1+ε) times as much heat as would be optimal, regardless of the number of component
gates. Unfortunately we prove that this problem remains hard — even determining if
a gate needs to dissipate any heat is a NP -complete problem.

Definition 6.30. LEF >0 is the subset of {0, 1}∗ interpreted as tuples (C, g) where C

is a Boolean circuit on n inputs and g is a gate in C. A string is in LEF >0 iff when C

receives a uniformly random input, any valid heat function for g must have positive
entropy flow on the marginal input distribution.

Theorem 6.31. LEF >0 is a NP -complete language.

We again break this proof into containment in NP and hardness for NP .

Lemma 6.32. LEF >0 ∈ NP .

Proof. Consider an input (C, g) where gate g computes the Boolean function f and let
D be the marginal distribution over inputs to g when C receives a uniformly random

235

input. Per Definition 6.9, since f has a deterministic output for each input, there
is a valid heat function for g with zero entropy flow iff f(x) ̸= f(x′) for all pairs
x, x′ such that x ≠ x′ and PrD[x],PrD[x′] > 0. We will construct a polynomial time
nondeterministic program (Turing machine) that only accepts pairs (C, g) with this
property. The program non-deterministically picks x, x′ ∈ {0, 1}n and rejects if x = x′.
When x ≠ x′ the program simulates C on these inputs until it is about to execute gate
g. Let y, y′ be the state of the input wires to g on inputs x, x′ respectively. Then the
program accepts if f(y) = f(y′) and otherwise rejects.

Lemma 6.33. LEF >0 is NP -hard.

Proof. We will prove this with a Karp reduction LSAT ≤p LEF >0. Let C be the input
to LSAT . We will construct a new circuit C′ on n+ 1 inputs consisting of the same
sequence of gates2 in C followed by a new gate g acting on the first wire of C as the
first input and the new input wire as the second input. This gate implements the
function f(x1, x2) = (x1, (1 − x1)x2). Our input to LEF >0 is then the pair (C′, g).
The only inputs (x1, x2) ̸= (x′

1, x
′
2) where f(x1, x2) = f(x1, x2) is when x1 = 1.

Thus (C′, g) ∈ LEF >0 exactly when the first wire of C evaluates to 1, implying that
C ∈ LSAT .

Corollary 6.34. Unless P = NP , there is no polynomial algorithm for constructing
a heat function Q for a gate g in a Boolean circuit C such that when C is run on the
uniform distribution of inputs, the entropy flow of gate g on its marginal distribution
over inputs D is at most (1 + ε) times that of the optimal heat function.

2The gates are redefined to behave the same as in C; they do not touch the wire containing the
new input.

236

Chapter 7: Conclusions

7.1 Summary

Time, space, and energy are the three most important measures of cost for
computation. Recent innovations in computer science and statistical physics have led
to new ways to think about these resources when computing. In this work we have
explored many results relating to these modernized notions of complexity. We have
shown how to improve the time-qubit efficiency of classical subroutines in quantum
algorithms, lower bound the time-space and cumulative memory efficiency of classical
and quantum computation, perform useful computation driven entirely by Brownian
motion, and characterize the computational complexity of optimizing Boolean circuits.

The first generations of fault-tolerant quantum computers will likely have a very
limited number of logical qubits, thus it is extremely important that we understand
the capabilities and limitations of space-bounded quantum computation. To this aim
we have discussed the spooky pebble game — a tool for simulating logically irreversible
classical subroutines in quantum algorithms with smaller overheads in terms of time
and qubit count. We gave a tight characterization of the spooky pebble game played
on the line graph, leading to optimal black box time-qubit savings with the technique.
Next we discussed new time-space tradeoff lower bounds for linear algebra problems,
showing that there is no quantum time-space advantage for many of these problems
in a query model.

In addition to more traditional time-space tradeoffs, cumulative memory is
another important notion of space and space for near term quantum computation. As
long as fresh ancillary qubits are reset to |0⟩ before use, the expected number of errors
in a quantum circuit scales linearly with its cumulative memory complexity. This
implies that quantum algorithms with lower cumulative memory complexity can be
implemented using fewer physical qubits for each logical qubit. Cumulative memory

237

complexity is also natural in settings like high performance and cloud computing
where space resources can be shared between concurrently executed tasks. We proved
unconditional classical and quantum cumulative memory lower bounds for sorting. We
also proved a general theorem that can be used to convert virtually all existing classical
and quantum time-space tradeoff lower bounds to matching bounds on the cumulative
memory complexity. Hence, we immediately get tight lower bounds on the cumulative
memory complexity for problems where the existing time-space tradeoff bounds are
known to be tight. Interpreted another way, our general theorem establishes that —
if one wants to prove an unconditional separation between cumulative memory and
time-space product complexity for any problem — then fundamentally new techniques
would be necessary to prove the requisite time-space product lower bounds.

Finally, we reviewed thermodynamic costs in computation through the lens of
stochastic thermodynamics. Entropy production is a natural metric of unavoidable
thermodynamic computational costs. The entropy production of a computation
depends not only on its logical behavior, but also the distribution over inputs and the
physics of the underlying device, making it harder to work with than other notions
of complexity. We present an abstract way to construct devices driven by Brownian
motion that perform computational sampling and function computation tasks where
the energetic costs are independent of the problem’s time complexity. In other words,
we built hypothetical devices that can perform computation where the energetic
costs scale linearly with the input / output size and otherwise independently of the
computation time. Additionally, we consider the thermodynamics of Boolean circuits
and show that fine-tuning their energetic costs is a PP -hard problem, making it
intractable in general.

7.2 Future work

Spooky pebble game We have shown asymptotically tight upper and lower bounds
for the spooky pebble game when played on the line graph. Going beyond the line

238

graph to arbitrary DAGs presents significant challenges as the number of pebbles
needed in the spooky pebble game is PSPACE-hard to approximate. Despite this, it is
still possible to design efficient pebbling strategies for specific graphs like the complete
binary tree. We think it would be interesting to explore strategies for the spooky
pebble game on graph topologies like butterfly graphs used in computing the DFT
(Tompa, 1980), and those used in the construction of data-independent memory-hard
functions (Alwen and Serbinenko, 2015; Ren and Devadas, 2016; Alwen et al., 2017a;
Blocki et al., 2022). In particular, it would be interesting to explore the cumulative
pebbling costs of these graphs in the spooky pebble game. Finally, the spooky pebble
game is but one way to use intermediate measurements to improve the time-space
efficiency of quantum algorithms. In some cases other methods of using intermediate
measurements — like block encodings ((Gilyén et al., 2019)) — could yield better
time and space efficiency tradeoffs for quantum algorithms.

Quantum time-space tradeoffs for linear algebra problems The techniques
we used to prove our lower bounds for these problems are very general and could likely
be applied to give similar bounds on other problems like universal hashing. More
generally the recording query method gives a much more intuitive way to think about
quantum query complexity. This method can be used to give a cleaner proofs of many
existing results and has potential applications for proving new quantum lower bounds
on query problems like property and distribution testing.

Cumulative memory complexity In this dissertation we presented negative
results — showing that virtually all existing classical and quantum time-space product
lower bounds can be extended to give matching lower bounds on the (always smaller)
notion of cumulative memory complexity. Thus fundamentally new techniques for
time-space product lower bounds are necessary if we want to prove an unconditional
asymptotic separation between time-space product and cumulative memory complexity.
While proving an unconditional classical or quantum advantage for cumulative memory

239

complexity seems unlikely, designing concrete classical and quantum algorithms that
are optimized for low cumulative memory complexity is still a promising research
direction. Our general theorem only precludes the existence of cumulative memory
efficient sequential algorithms for tasks where existing techniques yield a tight time-
space tradeoff lower bound. Thus we suggest focusing on parallel algorithms and
sequential problems without existing tight lower bounds.

In the cryptographic setting, there have been many interesting parallel classical
and quantum algorithms designed to break password hashing functions using low
cumulative memory. These algorithms often exhibit many steps with low space
interspersed with short bursts that use high space so that the cumulative memory
remains lower than the time-space product complexity (e.g. (Alwen and Blocki, 2016;
Blocki et al., 2022)). Particular non-cryptographic domains where similar tricks could
be used include divide and conquer, streaming, and graph problems. While there is
extensive prior work on classical and quantum time-space efficient algorithms in other
settings, design of such algorithms is focused on how to make the most of a fixed
maximum space bound. Thus there are ample opportunities to design classical and
quantum algorithms for non-cryptographic problems that can take advantage of spikes
in memory to maintain low cumulative memory complexity. While seeking out new
cumulative memory efficient algorithms, we also want to develop novel techniques for
proving tight time-space product lower bounds on problems where we believe there
may be an unconditional asymptotic cumulative memory advantage.

Thermodynamics of computation The connections between stochastic thermo-
dynamics and computation are very recent, leaving many open avenues for further
exploration. In particular, we are interested in better understanding the thermody-
namics of branching programs. Historically, branching programs have been used to
lower bound time-space tradeoffs for computation. If it is possible to give a reasonable
definition of entropy production in branching programs, it may lead to unconditional
tradeoffs between time, space, and energy for classical computation.

240

Appendix

Cumulative memory complexity

This section contains key lemmas needed to prove our results in Chapter 4.

Extending the lower bound to arbitrary success probabilities

It is possible to modify Theorem 4.19 for different success probabilities. When
n is sufficiently large, any quantum circuit C for sorting a list of length n with failure
probability at most δ and at most T layers that produces its sorted outputs in any
fixed time order requires cumulative memory that is Ω((1 − δ)n3/T). The key is
to choose a different value for the parameter γ in Proposition 4.16 governing the
completeness bound, which will change the corresponding value of α and β. If we
want to deal with non-constant values of γ, it is important to understand how γ and
α are related in Proposition 4.16. The following lemma is sufficient to prove Theorem
13 in (Klauck et al., 2007) (our Proposition 4.16). Although the authors of (Klauck
et al., 2007) prove a more general version of this proposition, the statement below
captures what is necessary in our proof. Specifically, we invoke their Lemma 12 where
δ = 0, C = keγ+1 and D = α

√
kn.

Proposition G.1 (Special case of Lemma 12 in (Klauck et al., 2007)). Let p be a
degree 2α

√
kn univariate polynomial such that:

• p(i) = 0 when i ∈ {0, . . . , k − 1}

• p(k) = σ

• p(i) ∈ [0, 1] when i ∈ {k + 1, . . . , n}

Then there exists universal positive constants a and b such that for any γ > 0 where

241

keγ+1 ≤ n− k:

σ ≤ a · exp
(
b(2α
√
kn− k)2 + 4eγ/2+1/2k

√
n− k(2α

√
n−
√
k)

n− k(eγ+1 + 1) − k − γk
)
.

The σ in this bound gives the completeness bound on the k-threshold problem.
We now prove that σ is sufficiently small when α ∈ Ω(e−γ/2).

Lemma G.2. Let a, b > 0 be the constants from Proposition G.1. When we have√
k/n < α < min

(
1/(16

√
eγ+1 + 1),

√
1/(8b)

)
, the completeness bound σ for the

k-threshold problem with α
√
kn queries is less than a · e−γk.

Proof. By Proposition G.1 we have

σ ≤ a · exp
(
b(2α
√
kn− k)2 + 4eγ/2+1/2k

√
n− k(2α

√
n−
√
k)

n− k(eγ+1 + 1) − k − γk
)

(G.1)

We first bound the first term in the numerator

b(2α
√
kn− k)2 = b(4α2kn− 4αk

√
kn+ k2)

= kbα2(4n− 4
√
kn/α + k/α2)

< kbα2(4n− 3k/α2) since
√
k/n < α

< kbα2(4n− 4k(eγ+1 + 1)) as α < 1/(16
√
eγ+1 + 1)

= 4kbα2(n− k(eγ+1 + 1)).

Next we bound the second term in the numerator

4eγ/2+1/2k
√
n− k(2α

√
n−
√
k) ≤ 4eγ/2+1/2k

√
n(2α

√
n−
√
k)

= 4eγ/2+1/2kα(2n−
√
nk/α)

< 4eγ/2+1/2kα(2n− k/α2) as
√
k/n < α

< 4eγ/2+1/2kα(2n− 2k(eγ+1 + 1)) as α < 1/(16
√
eγ+1 + 1)

= 8eγ/2+1/2kα(n− k(eγ+1 + 1))

242

Plugging these bounds into (G.1) we get

σ < a · exp
(
4kbα2 + 8eγ/2+1/2kα− k − γk

)
< a · exp

(
4kbα2 − k/2− γk

)
as α < 1/(16

√
eγ+1 + 1)

< a · exp (−γk) as α <
√

1/8b

We now describe how to substitute the bound of Lemma G.2 in place of
Proposition 4.16 to yield cumulative memory lower bounds for quantum circuits with
failure probability at most δ: To prove the analog of Lemma 4.18, for any S, k, and
δ ∈ (0, 1), we can reprove a more precise version of Lemma 4.17 using Lemma G.2
instead of Proposition 4.16 to bound the success probability for the k-threshold
problem and choose

γ = ln(a · 22S/(1− δ))− 1
k

+ 1

to get a success probability of less than 1− δ for circuits with as many as

Ω
(1− δ

22S

)1/2k√
kn


layers and S qubits of advice to produce k outputs. If we repeat the proof of
Theorem 4.19 for failure probability less than δ, we can set β to a value that is
Ω(
√

1− δ) to obtain a lower bound on the cumulative memory that is Ω((1− δ)n3/T).

Optimizations

In this section we prove general optimization lemmas that allow us to derive
worst-case properties of the allocation of branching program layers into blocks.

The first special case is relevant for our analysis of quantum sorting algorithms.

Lemma G.3. For non-negative reals x1, x2, . . . if ∑i xi ≤
∑

i x
2
i then ∑

i x
3
i ≥

∑
i x

2
i .

Proof. Without loss generality we remove all xi that are 0 or 1 since they contribute
the same amount to each of ∑i xi,

∑
i x

2
i , and ∑

i x
3
i . Therefore every xi satisfies

243

0 < xi < 1 or it satisfies xi > 1. We rename those xi with 0 < xi < 1 by yi and those
xi with xi > 1 by zj.

Then ∑i xi ≤
∑

i x
2
i can be rewritten as ∑i yi(1− yi) ≤

∑
j zj(zj − 1), and both

quantities are positive. Let y∗ be the largest value < 1 and z∗ be the smallest value
> 1. Thus:
∑

i

(y2
i − y3

i) =
∑

i

y2
i (1− yi) ≤

∑
i

y∗yi(1− yi) = y∗∑
i

yi(1− yi) ≤ y∗∑
j

zj(zj − 1)

< z∗∑
j

zj(zj − 1) =
∑

j

z∗zj(zj − 1) ≤
∑

j

z2
j (zj − 1) =

∑
j

(z3
j − z2

j).

Rewriting gives ∑i y
2
i +∑

j z
2
j <

∑
i y

3
i +∑

j z
3
j , or ∑i x

3
i >

∑
i x

2
i , as required.

The following is a generalization of the above to all differentiable functions
p : R≥0 → R≥0 such that s/p(s) is a concave increasing function of s.

Lemma 4.25. Let p : R≥0 → R≥0 be a differentiable function such that q(x) = x/p(x)
is a concave increasing function of x. For x1, x2, . . . ∈ R≥0, if ∑i xi ≥ K and∑

i p(xi) ≤ L then ∑
i xip(xi) ≥ q−1(K/L) · L.

Proof. By hypothesis, ∑i (xi −Kp(xi)/L) ≥ 0. Observe that s − Kp(s)/L is an
increasing function of s since s/p(s) is an increasing function of s that is 0 precisely
when s = q−1(K/L). Since all xi with xi = q−1(K/L) evaluate to 0 in the sum, we
can rewrite it as

∑
xi>q−1(K/L)

(xi −Kp(xi)/L) ≥
∑

xi<q−1(K/L)
(Kp(xi)/L− xi) , (G.2)

where each of the summed terms is positive. For xi ̸= q−1(K/L), define

f(xi) = xi ·
p(xi)− q−1(K/L) · L/K

xi −Kp(xi)/L
.

Observe that for xi = q−1(K/L) the denominator is 0 and the numerator equals
p(xi) − xi · L/K which is also 0. For xi > q−1(K/L) both the numerator and
denominator are positive and for xi < q−1(K/L) both the numerator and denominator
are negative. Hence f(xi) is non-negative for every xi ̸= q−1(K/L).

244

Claim G.4. If q is a convex differentiable function, we can complete f to a (non-
decreasing) continuous function of x with f ′(x) ≥ 0 for all x with 0 < x ̸= q−1(K/L)

Proof of Claim. Write a = q−1(K/L). Then since p(x) > 0 and q(a) > 0, we have

f(x) = x · p(x)− x · a/q(a)
x− q(a) · p(x) = x− (x/p(x)) · a/q(a)

x/p(x)− q(a)

= x− q(x) · a/q(a)
q(x)− q(a) = 1

q(a) ·
q(a) · x− a · q(x)
q(x)− q(a) .

Therefore

f ′(x) = 1
q(a) ·

(q(a)− a · q′(x))(q(x)− q(a))− (q(a) · x− a · q(x)) · q′(x)
(q(x)− q(a))2

= q(x)− q(a) + (a− x) · q′(x)
(q(x)− q(a))2 .

Since the denominator is a square and q is increasing, to prove that f ′(x) ≥ 0 for
x ̸= a it suffices to prove that the numerator is non-negative.

Suppose first that x < a, Then a− x > 0 and the numerator q(x)− q(a) + (a−
x) · q′(x) ≥ 0 if and only if q′(x) ≥ q(a)−q(x)

a−x
, which is equivalent to the slope of the

tangent to q at x being at least that of the chord from x to a. This is certainly true
since q is a concave function.

Suppose now that x > a. Then a−x < 0 and the numerator q(x)− q(a) + (a−
x) · q′(x) ≥ 0 if and only if q′(x) ≤ q(x)−q(a)

x−a
. Again, this is true since q is a concave

function.

It remains to show that we can complete f to a continuous function by giving
it a finite value at a = q−1(K/L). By l’Hôpital’s rule, the limit of q(a) · f(x) as x
approaches a is

q(a)− a · q′(a)
q′(a)

if the denominator is non-zero, which it is, since q is an increasing differentiable
function at a.

245

We now have the tools we need. Let x∗
− be the largest xi < q−1(K/L) and x∗

+

be the smallest xi > q−1(K/L). Then we have f(x∗
+) ≥ f(x∗

−) and

∑
xi>q−1(K/L)

(
xi p(xi)− q−1(K/L) · L/K · xi

)
=

∑
xi>q−1(K/L)

f(xi) · (xi −Kp(xi)/L)

≥
∑

xi>q−1(K/L)
f(x∗

+) · (xi −Kp(xi)/L)

≥ f(x∗
−)

∑
xi>q−1(K/L)

(xi −Kp(xi)/L)

≥ f(x∗
−)

∑
xi<q−1(K/L)

(Kp(xi)/L− xi) by Equation (G.2)

≥
∑

xi<q−1(K/L)
f(xi) · (Kp(xi)/L− xi)

=
∑

xi<q−1(K/L)

(
q−1(K/L) · L/K · xi − xi p(xi)

)
.

Adding back the terms where xi = q−1(K/L), which have value 0, and rewriting we
obtain ∑

i

(
xi p(xi)− q−1(K/L) · L/K · xi

)
≥ 0.

Therefore we have

∑
i

xi p(xi) ≥ q−1(K/L) · L/K ·
∑

i

xi ≥ q−1(K/L) · (L/K) ·K = q−1(K/L) · L.

Bounding the loss

Lemma 4.22. The following hold for every non-decreasing function p : R→ R with
p(1) = 1:

(a) 1/p(n) ≤ Lp(n) ≤ 1.

(b) If p is a polynomial function p(s) = s1/c then Lp(n) > 1/2c+1.

(c) For any c > 1, Lp(n) ≥ min
1≤s≤n

p(s)− p(s/c)
cp(s) .

246

(d) We say that p is nice if it is differentiable and there is an integer c > 1 such that
for all x, p′(cx) ≥ p′(x)/c. If p is nice then Lp(n) is Ω(1/ log2 n). This is tight
for p with p(s) = 1 + log2 s.

Proof. Since p is non-decreasing, 1 ≤ p−1(j) ≤ p−1(k) for 1 ≤ j ≤ k and hence

1
k
≤
∑k

j=1 p
−1(j)

k · p−1(k) ≤ 1 (G.3)

since p−1(k) is included in the numerator. Lp(n) is the minimum over all integers
k ∈ [1, p(n)] of

∑k

j=1 p−1(j)
k·p−1(k) and p is non-decreasing so we have 1/p(n) ≤ Lp(n) ≤ 1,

which proves part (a)

When p(s) = s1/c we have

k∑
j=1

p−1(j) ≥
k∑

j=⌈(k+1)/2⌉
j c > ⌈k/2⌉(k/2)c ≥ (k/2)c+1 = k · p−1(k)/2c+1

so each term in the definition of Lp(n) is larger than 1/2c+1 which proves part (b).
(More precise bounds can be shown, but we are not focused on the specific constant.)

Let 1 ≤ k ≤ p(n) be an integer. Then 1 ≤ s = p−1(k) ≤ n. Observe that there
are at least p(s)− p(s/c) integers j ≤ k with p−1(j) ≥ s/c. Therefore∑k

j=1 p
−1(j)

k · p−1(k) ≥
(p(s)− p(s/c)) · s/c

kp−1(k) = p(s)− p(s/c)
ck

= p(s)− p(s/c)
cp(s) . (G.4)

The minimum over all k ∈ [1, p(n)] is equivalent to the minimum over all s ∈ [1, n],
which proves part (c).

Now suppose that p is nice. Since p is differentiable, for any s,

p(cs)− p(s) =
∫ cs

s
p′(y) dy

=
∫ c

s/c
p′(cx)c dx by substitution y = cx

≥
∫ c

s/c
p′(x) dx since p is nice

= p(s)− p(s/c).

247

Then by induction we have that for every positive integer i ≤ logc s, p(s)− p(s/c) ≥
p(s/ci−1)− p(s/ci). Write ℓ = ⌊logc s⌋. Then s/cℓ < c and

p(s)− p(s/cℓ) =
ℓ∑

i=1
[p(s/ci−1)− p(s/ci)] ≤ ℓ · [p(s)− p(s/c)],

or equivalently that p(s)− p(s/c) ≥ (p(s)− p(s/cℓ))/ℓ and hence

p(s)− p(s/c) ≥ (p(s)− p(c))/ logc s

since p is a non-decreasing function. Applying the lower bound from Equation (G.3)
when k = p(s) < 2p(c) and the lower bound from Equation (G.4) when p(s) ≥ 2p(c)
we obtain

Lp(n) ≥ min
(

1
2p(c) , min

1≤s≤n:p(s)≥2p(c)
(1− p(c)/p(s))/(c logc s)

)
.

Since c is a constant, we obtain that Lp(n) is Ω(1/ log n).

Observe that p given by p(s) = 1 + log2 s is nice for every constant c > 0
since p′(cx) = (ln 2)−1/(cx) = p′(x)/c. In this case we have p−1(j) = 2j−1 and
Lp(n) < 2/p(n) < 2/ log2 n since the largest term p−1(k) in each numerator is (a little)
more than the sum of all smaller terms put together. Together with the lower bound,
this proves part (d).

248

Works Cited

Scott Aaronson. Limitations of quantum advice and one-way communication.
Theory of Computing, 1, February 2005. ISSN 1557-2862. doi: 10.4086/toc.20
05.v001a001. URL https://doi.org/10.4086/toc.2005.v001a001.

Scott Aaronson. Oracles are subtle but not malicious. In Proceedings of the
21st Annual IEEE Conference on Computational Complexity, CCC ’06, pages
340–354. IEEE, 2006. ISBN 0769525962. doi: 10.1109/CCC.2006.32. URL
https://doi.org/10.1109/CCC.2006.32.

Scott Aaronson. Introduction to quantum information science lecture notes,
2018. URL https://scottaaronson.com/qclec.pdf.

Scott Aaronson and Alex Arkhipov. The computational complexity of linear
optics. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, STOC ’11, pages 333–342. ACM, 2011. ISBN 9781450306911. doi:
10.1145/1993636.1993682. URL https://doi.org/10.1145/1993636.199368

2.

Scott Aaronson, Daniel Grier, and Luke Schaeffer. The classification of reversible
bit operations. In Proceedings of the 8th Innovations in Theoretical Computer
Science Conference, volume 67 of ITCS ’17, pages 23:1–23:34. LIPIcs, 2017.
ISBN 978-3-95977-029-3. doi: 10.4230/LIPIcs.ITCS.2017.23. URL https:

//doi.org/10.4230/LIPIcs.ITCS.2017.23.

Farid Ablayev, Cristopher Moore, and Christopher Pollett. Quantum and
stochastic branching programs of bounded width. In Proceedings of the 29th
International Colloquium on Automata, Languages and Programming, ICALP
’02, pages 343–354. Springer, 2002. ISBN 978-3-540-45465-6. doi: 10.1007/3-5
40-45465-9 30. URL https://doi.org/10.1007/3-540-45465-9_30.

249

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.1109/CCC.2006.32
https://scottaaronson.com/qclec.pdf
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.4230/LIPIcs.ITCS.2017.23
https://doi.org/10.4230/LIPIcs.ITCS.2017.23
https://doi.org/10.1007/3-540-45465-9_30

Karl R. Abrahamson. A time-space tradeoff for Boolean matrix multiplication.
In Proceedings of the 31st Annual Symposium on Foundations of Computer
Science, volume 1 of SFCS ’90, pages 412–419. IEEE, 1990. doi: 10.1109/FSCS
.1990.89561. URL https://doi.org/10.1109/FSCS.1990.89561.

Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general
sequential machines. Journal of Computer and System Sciences, 43(2):269–
289, 1991. ISSN 1090-2724. doi: 10.1016/0022-0000(91)90014-v. URL
https://doi.org/10.1016/0022-0000(91)90014-V.

Google Quantum AI and Collaborators. Quantum error correction below the
surface code threshold. Nature, 638:920–926, December 2024. ISSN 1476-4687.
doi: 10.1038/s41586-024-08449-y. URL https://doi.org/10.1038/s41586-0

24-08449-y.

Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent
memory-hard functions. In Proceedings of Advances in Cryptology – CRYPTO
2016, CRYPTO ’16, pages 241–271. Springer, 2016. ISBN 978-3-662-53008-5.
doi: 10.1007/978-3-662-53008-5 9. URL https://doi.org/10.1007/978-3-6

62-53008-5_9.

Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and
memory-hard functions. In Proceedings of the 47th Annual ACM Symposium
on Theory of Computing, STOC ’15, pages 595–603. ACM, 2015. ISBN
9781450335362. doi: 10.1145/2746539.2746622. URL https://doi.org/10.1

145/2746539.2746622.

Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof
Pietrzak, and Stefano Tessaro. On the complexity of scrypt and proofs of space
in the parallel random oracle model. In Proceedings of Advances in Cryptology –
EUROCRYPT 2016, EUROCRYPT ’16, pages 358–387. Springer, 2016. doi:

250

https://doi.org/10.1109/FSCS.1990.89561
https://doi.org/10.1016/0022-0000(91)90014-V
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1145/2746539.2746622
https://doi.org/10.1145/2746539.2746622

10.1007/978-3-662-49896-5 13. URL https://doi.org/10.1007/978-3-662

-49896-5_13.

Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs
and their cumulative memory complexity. In Proceedings of Advances in
Cryptology – EUROCRYPT 2017, EUROCRYPT ’17, pages 3–32. Springer,
2017a. ISBN 978-3-319-56617-7. doi: 10.1007/978-3-319-56617-7 1. URL
https://doi.org/10.1007/978-3-319-56617-7_1.

Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro.
Scrypt is maximally memory-hard. In Proceedings of Advances in Cryptology
– EUROCRYPT 2017, EUROCRYPT ’17, pages 33–62. Springer, 2017b. doi:
10.1007/978-3-319-56617-7 2. URL https://doi.org/10.1007/978-3-319-5

6617-7_2.

Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals.
Cumulative space in black-white pebbling and resolution. In Proceedings of
the 8th Innovations in Theoretical Computer Science Conference, volume 67
of ITCS ’17, pages 38:1–38:21. LIPIcs, 2017c. ISBN 978-3-95977-029-3. doi:
10.4230/LIPIcs.ITCS.2017.38. URL http://doi.org/10.4230/LIPIcs.ITCS.

2017.38.

Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of
Computer and System Sciences, 64(4):750–767, June 2002. ISSN 0022-0000. doi:
10.1006/jcss.2002.1826. URL https://doi.org/10.1006/jcss.2002.1826.

Andris Ambainis, Robert Špalek, and Ronald de Wolf. A new quantum lower
bound method, with applications to direct product theorems and time-space
tradeoffs. Algorithmica, 55(3):422–461, September 2009. ISSN 1432-0541. doi:
10.1007/s00453-007-9022-9. URL https://doi.org/10.1007/s00453-007-9

022-9.

251

https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
http://doi.org/10.4230/LIPIcs.ITCS.2017.38
http://doi.org/10.4230/LIPIcs.ITCS.2017.38
https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1007/s00453-007-9022-9
https://doi.org/10.1007/s00453-007-9022-9

Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. Memory-
hard puzzles in the standard model with applications to memory-hard functions
and resource-bounded locally decodable codes. In Proceedings of the 13th
International Conference on Security and Cryptography for Networks, SCN ’22,
pages 45–68. Springer, 2022. ISBN 978-3-031-14790-6. doi: 10.1007/978-3-031
-14791-3 3. URL https://doi.org/10.1007/978-3-031-14791-3_3.

Andrew Baird, Bryant Bost, Stefano Buliani, Vyom Nagrani, Ajay Nair, Rahul
Popat, and Brajendra Singh. Aws serverless multi-tier architectures with amazon
api gateway and aws lambda, 2021. URL https://docs.aws.amazon.com/wh

itepapers/latest/serverless-multi-tier-architectures-api-gateway

-lambda/welcome.html.

Ainesh Bakshi and Ewin Tang. An improved classical singular value trans-
formation for quantum machine learning. In Proceedings of the 2024 An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’24, pages 2398–
2453. SIAM, 2024. doi: 10.1137/1.9781611977912.86. URL https:

//doi.org/10.1137/1.9781611977912.86.

Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald
de Wolf. Quantum lower bounds by polynomials. Journal of the ACM, 48
(4):778–797, July 2001. ISSN 0004-5411. doi: 10.1145/502090.502097. URL
https://doi.org/10.1145/502090.502097.

Paul Beame. A general sequential time-space tradeoff for finding unique elements.
SIAM Journal on Computing, 20(2):270–277, April 1991. ISSN 1095-7111. doi:
10.1137/0220017. URL https://doi.org/10.1137/0220017.

Paul Beame and Niels Kornerup. Cumulative memory lower bounds for ran-
domized and quantum computation. In Proceedings of the 50th International
Colloquium on Automata, Languages, and Programming, volume 261 of ICALP

252

https://doi.org/10.1007/978-3-031-14791-3_3
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/welcome.html
https://doi.org/10.1137/1.9781611977912.86
https://doi.org/10.1137/1.9781611977912.86
https://doi.org/10.1145/502090.502097
https://doi.org/10.1137/0220017

’23, pages 17:1–17:20. LIPIcs, 2023. ISBN 978-3-95977-278-5. doi: 10.4230/LIPI
cs.ICALP.2023.17. URL https://doi.org/10.4230/LIPIcs.ICALP.2023.17.

Paul Beame and Niels Kornerup. Cumulative memory lower bounds for
randomized and quantum computation. ACM Transactions on Computa-
tion Theory, June 2025. ISSN 1942-3454. doi: 10.1145/3728715. URL
https://doi.org/10.1145/3728715.

Paul Beame, T. S. Jayram, and Michael E. Saks. Time-space tradeoffs for
branching programs. Journal of Computer and System Sciences, 63(4):542–
572, December 2001. ISSN 1090-2724. doi: 10.1006/jcss.2001.1778. URL
https://doi.org/10.1006/jcss.2001.1778.

Paul Beame, Niels Kornerup, and Michael Whitmeyer. Quantum time-space
tradeoffs for matrix problems. In Proceedings of the 56th Annual ACM Sym-
posium on Theory of Computing, STOC ’24, pages 596–607. ACM, 2024.
ISBN 9798400703836. doi: 10.1145/3618260.3649700. URL https:

//doi.org/10.1145/3618260.3649700.

Charles H. Bennett. Logical reversibility of computation. IBM Journal of
Research and Development, 17(6):525–532, November 1973. ISSN 0018-8646.
doi: 10.1147/rd.176.0525. URL https://doi.org/10.1147/rd.176.0525.

Charles H. Bennett. The thermodynamics of computation - a review. In-
ternational Journal of Theoretical Physics, 21:905–840, December 1982. doi:
10.1007/BF02084158. URL https://doi.org/10.1007/BF02084158.

Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM
Journal on Computing, 18(4):766–776, August 1989. doi: 10.1137/0218053.
URL https://doi.org/10.1137/0218053.

253

https://doi.org/10.4230/LIPIcs.ICALP.2023.17
https://doi.org/10.1145/3728715
https://doi.org/10.1006/jcss.2001.1778
https://doi.org/10.1145/3618260.3649700
https://doi.org/10.1145/3618260.3649700
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1007/BF02084158
https://doi.org/10.1137/0218053

Charles H. Bennett and Rolf Landauer. The fundamental physical limits of
computation, June 2011. URL https://www.scientificamerican.com/art

icle/the-fundamental-physical-limits-of-computation/.

Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM
Journal on Computing, 26(5):1411–1473, October 1997. ISSN 1095-7111. doi:
10.1137/S0097539796300921. URL https://doi.org/10.1137/S00975397963

00921.

Jeremiah Blocki and Samson Zhou. On the depth-robustness and cumulative
pebbling cost of argon2i. In Proceedings of the Theory of Cryptography, TCC ’17,
pages 445–465. Springer, 2017. ISBN 978-3-319-70500-2. doi: 10.1007/978-3-3
19-70500-2 15. URL https://doi.org/10.1007/978-3-319-70500-2_15.

Jeremiah Blocki, Blake Holman, and Seunghoon Lee. The parallel reversible
pebbling game: Analyzing the post-quantum security of imhfs. In Proceedings of
the 20th International Theory of Cryptography Conference, TCC ’22, pages 52–79.
Springer, 2022. ISBN 978-3-031-22317-4. doi: 10.1007/978-3-031-22318-1 3.
URL https://doi.org/10.1007/978-3-031-22318-1_3.

Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. Balloon hashing: A
memory-hard function providing provable protection against sequential attacks.
In Proceedings of Advances in Cryptology – ASIACRYPT 2016, ASIACRYPT
’16, pages 220–248. Springer, 2016. ISBN 978-3-662-53887-6. doi: 10.1007/97
8-3-662-53887-6 8. URL https://doi.org/10.1007/978-3-662-53887-6_8.

Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on
a general sequential model of computation. SIAM Journal on Computing,
11(2):287–297, May 1982. ISSN 1095-7111. doi: 10.1137/0211022. URL
https://doi.org/10.1137/0211022.

254

https://www.scientificamerican.com/article/the-fundamental-physical-limits-of-computation/
https://www.scientificamerican.com/article/the-fundamental-physical-limits-of-computation/
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1007/978-3-319-70500-2_15
https://doi.org/10.1007/978-3-031-22318-1_3
https://doi.org/10.1007/978-3-662-53887-6_8
https://doi.org/10.1137/0211022

Allan Borodin, Michael J. Fischer, David G. Kirkpatrick, Nancy A. Lynch, and
Martin Tompa. A time-space tradeoff for sorting on non-oblivious machines. In
Proceedings of the 20th Annual Symposium on Foundations of Computer Science,
SFCS ’79, pages 319–327. IEEE, 1979. doi: 10.1109/SFCS.1979.4. URL
https://doi.org/10.1109/SFCS.1979.4.

Daniele Cappelletti, Andrés Ortiz-Muñoz, David F. Anderson, and Erik Winfree.
Stochastic chemical reaction networks for robustly approximating arbitrary
probability distributions. Theoretical Computer Science, 801:64–95, January
2020. doi: 10.1016/j.tcs.2019.08.013. URL https://doi.org/10.1016/j.tcs.

2019.08.013.

Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party
protocols. In Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, STOC ’83, pages 94–99. ACM, 1983. ISBN 0897910990. doi:
10.1145/800061.808737. URL https://doi.org/10.1145/800061.808737.

Binyi Chen and Stefano Tessaro. Memory-hard functions from cryptographic
primitives. In Proceedings of Advances in Cryptology – CRYPTO 2019,
CRYPTO ’19, pages 543–572. Springer, 2019. ISBN 978-3-030-26950-0. doi:
10.1007/978-3-030-26951-7 19. URL https://doi.org/10.1007/978-3-030

-26951-7_19.

Nadiia Chepurko, Kenneth L. Clarkson, Lior Horesh, Honghao Lin, and David P.
Woodruff. Quantum-inspired algorithms from randomized numerical linear
algebra. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of PMLR ’22, pages 3879–3900. PMLR, 2022. URL
https://proceedings.mlr.press/v162/chepurko22a.html.

Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and
Chunhao Wang. Sampling-based sublinear low-rank matrix arithmetic frame-
work for dequantizing quantum machine learning. In Proceedings of the 52nd

255

https://doi.org/10.1109/SFCS.1979.4
https://doi.org/10.1016/j.tcs.2019.08.013
https://doi.org/10.1016/j.tcs.2019.08.013
https://doi.org/10.1145/800061.808737
https://doi.org/10.1007/978-3-030-26951-7_19
https://doi.org/10.1007/978-3-030-26951-7_19
https://proceedings.mlr.press/v162/chepurko22a.html

Annual ACM Symposium on Theory of Computing, STOC 2020, pages 387–400.
ACM, 2020a. ISBN 9781450369794. doi: 10.1145/3357713.3384314. URL
https://doi.org/10.1145/3357713.3384314.

Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and
Chunhao Wang. Quantum-inspired algorithms for solving low-rank linear
equation systems with logarithmic dependence on the dimension. In Proceedings
of the 31st International Symposium on Algorithms and Computation, volume
181 of ISAAC ’20, pages 47:1–47:17. LIPIcs, 2020b. ISBN 978-3-95977-173-3.
doi: 10.4230/LIPIcs.ISAAC.2020.47. URL https://doi.org/10.4230/LIPIcs

.ISAAC.2020.47.

Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum algorithm
for systems of linear equations with exponentially improved dependence on
precision. SIAM Journal on Computing, 46(6):1920–1950, November 2017. doi:
10.1137/16M1087072. URL https://doi.org/10.1137/16M1087072.

John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt.
Proposed experiment to test local hidden-variable theories. Physical Review
Letters, 23(15):880–884, October 1969. ISSN 1079-7114. doi: 10.1103/PhysRe
vLett.23.880. URL https://doi.org/10.1103/PhysRevLett.23.880.

Alan Cobham. The recognition problem for the set of perfect squares. In
Proceedings of the 7th Annual Symposium on Switching and Automata Theory,
SWAT ’66, pages 78–87. IEEE, 1966. doi: 10.1109/swat.1966.30. URL
https://doi.org/10.1109/swat.1966.30.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the 3rd Annual ACM Symposium on Theory of Computing, STOC ’71,
pages 151–158. ACM, 1971. ISBN 9781450374644. doi: 10.1145/800157.805047.
URL https://doi.org/10.1145/800157.805047.

256

https://doi.org/10.1145/3357713.3384314
https://doi.org/10.4230/LIPIcs.ISAAC.2020.47
https://doi.org/10.4230/LIPIcs.ISAAC.2020.47
https://doi.org/10.1137/16M1087072
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1109/swat.1966.30
https://doi.org/10.1145/800157.805047

Stephen A. Cook. An observation on time-storage trade off. In Proceedings of
the 5th Annual ACM Symposium on Theory of Computing, STOC ’73, pages
29–33. ACM, 1973. ISBN 9781450374309. doi: 10.1145/800125.804032. URL
https://doi.org/10.1145/800125.804032.

Alessandro Cosentino, Robin Kothari, and Adam Paetznick. Dequantizing
read-once quantum formulas. In Proceedings of the 8th Conference on the
Theory of Quantum Computation, Communication and Cryptography, volume 22
of TQC ’13, pages 80–92. LIPIcs, 2013. doi: 10.4230/LIPICS.TQC.2013.80.
URL https://doi.org/10.4230/LIPIcs.TQC.2013.80.

Thomas M. Cover. Elements of Information Theory, 2nd Edition. Wiley, 2006.
ISBN 978-0-471-24195-9.

Jeffrey Dastin and Stephen Nellis. Focus: For tech giants, ai like bing and bard
poses billion-dollar search problem, February 2023. URL https://reuters.

com/technology/tech-giants-ai-like-bing-bard-poses-billion-dolla

r-search-problem-2023-02-22/.

Erik D. Demaine and Quanquan C. Liu. Inapproximability of the standard
pebble game and hard to pebble graphs. In Proceedings of Algorithms and Data
Structures, WADS ’17, pages 313–324. Springer, 2017a. ISBN 978-3-319-62127-2.
doi: 10.1007/978-3-319-62127-2 27. URL https://doi.org/10.1007/978-3

-319-62127-2_27.

Erik D. Demaine and Quanquan C. Liu. Inapproximability of the standard
pebble game and hard to pebble graphs, 2017b. URL https://doi.org/10.4

8550/arXiv.1707.06343.

Erik D. Demaine, Jayson Lynch, Geronimo J. Mirano, and Nirvan Tyagi. Energy-
efficient algorithms. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, ITCS ’16, pages 321–332. ACM, 2016. ISBN

257

https://doi.org/10.1145/800125.804032
https://doi.org/10.4230/LIPIcs.TQC.2013.80
https://reuters.com/technology/tech-giants-ai-like-bing-bard-poses-billion-dollar-search-problem-2023-02-22/
https://reuters.com/technology/tech-giants-ai-like-bing-bard-poses-billion-dollar-search-problem-2023-02-22/
https://reuters.com/technology/tech-giants-ai-like-bing-bard-poses-billion-dollar-search-problem-2023-02-22/
https://doi.org/10.1007/978-3-319-62127-2_27
https://doi.org/10.1007/978-3-319-62127-2_27
https://doi.org/10.48550/arXiv.1707.06343
https://doi.org/10.48550/arXiv.1707.06343

9781450340571. doi: 10.1145/2840728.2840756. URL https://doi.org/10.1

145/2840728.2840756.

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society A, 439(1907):553–558, December
1992. ISSN 1471-2946. doi: 10.1098/rspa.1992.0167. URL https://doi.org/

10.1098/rspa.1992.0167.

David Doty, Niels Kornerup, Austin Luchsinger, Leo Orshansky, David Solove-
ichik, and Damien Woods. Harvesting brownian motion: Zero energy computa-
tional sampling, 2024. URL https://doi.org/10.48550/arXiv.2309.06957.

Philippe Dumas. Reversing a finite sequence, 1995. URL https://algo.inr

ia.fr/seminars/sem94-95/pottier.pdf. Summary of a seminar talk given
by Löıc Pottier.

Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In
Proceedings of Advances in Cryptology – CRYPTO 2005, CRYPTO ’05, pages
37–54. Springer, 2005. ISBN 978-3-540-31870-5. doi: 10.1007/11535218 3.
URL https://doi.org/10.1007/11535218_3.

Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable
self-erasing functions. In Proceedings of the 8th Theory of Cryptography Confer-
ence, TCC ’11, pages 125–143. Springer, 2011. ISBN 978-3-642-19571-6. doi:
10.1007/978-3-642-19571-6 9. URL https://doi.org/10.1007/978-3-642-1

9571-6_9.

Massimiliano Esposito and Christian Van den Broeck. Second law and landauer
principle far from equilibrium. Europhysics Letters, 95(4), August 2011. ISSN
1286-4854. doi: 10.1209/0295-5075/95/40004. URL https://doi.org/10.120

9/0295-5075/95/40004.

258

https://doi.org/10.1145/2840728.2840756
https://doi.org/10.1145/2840728.2840756
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.48550/arXiv.2309.06957
https://algo.inria.fr/seminars/sem94-95/pottier.pdf
https://algo.inria.fr/seminars/sem94-95/pottier.pdf
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/978-3-642-19571-6_9
https://doi.org/10.1007/978-3-642-19571-6_9
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1209/0295-5075/95/40004

Michael P. Frank and M. Josephine Ammer. Relativized separation of reversible
and irreversible space-time complexity classes, 2017. URL https://doi.org/

10.48550/arXiv.1708.08480.

Edward Fredkin and Tommao Toffoli. Conservative logic. International Journal
of Theoretical Physics, 21:219–253, April 1982. doi: 10.1007/BF01857727. URL
https://doi.org/10.1007/BF01857727.

Craig Gidney. Spooky pebble games and irreversible uncomputation, August
2019. URL https://algassert.com/post/1905.

John T. Gill. Computational complexity of probabilistic turing machines.
In Proceedings of the 6th Annual ACM Symposium on Theory of Computing,
STOC ’74, pages 91–95. Association for Computing Machinery, 1974. ISBN
9781450374231. doi: 10.1145/800119.803889. URL https://doi.org/10.114

5/800119.803889.

András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum
singular value transformation and beyond: Exponential improvements for
quantum matrix arithmetics. In Proceedings of the 51st Annual ACM Sym-
posium on Theory of Computing, STOC ’19, pages 193–204. ACM, 2019.
ISBN 9781450367059. doi: 10.1145/3313276.3316366. URL https:

//doi.org/10.1145/3313276.3316366.

András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired
algorithm for linear regression. Quantum, 6, June 2022. doi: 10.22331/q-202
2-06-30-754. URL https://doi.org/10.22331/q-2022-06-30-754.

José Grimm, Löıc Pottier, and Nicole Rostaing-Schmidt. Optimal time and
minimum space-time product for reversing a certain class of programs. Technical
report, INRIA, 1996.

259

https://doi.org/10.48550/arXiv.1708.08480
https://doi.org/10.48550/arXiv.1708.08480
https://doi.org/10.1007/BF01857727
https://algassert.com/post/1905
https://doi.org/10.1145/800119.803889
https://doi.org/10.1145/800119.803889
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.22331/q-2022-06-30-754

Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 212–219. ACM, 1996. ISBN 0897917855. doi:
10.1145/237814.237866. URL https://doi.org/10.1145/237814.237866.

Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for
finding multiple collision pairs. In Proceedings of the 16th Conference on Theory
of Quantum Computation, Communication and Cryptography, volume 197 of
TQC ’21, pages 1:1–1:21. LIPIcs, 2021. ISBN 978-3-95977-198-6. doi: 10.4230/
LIPIcs.TQC.2021.1. URL https://doi.org/10.4230/LIPIcs.TQC.2021.1.

Yassine Hamoudi, Qipeng Liu, and Makrand Sinha. The nisq complexity of
collision finding. In Proceedings of Advances in Cryptology – EUROCRYPT
2024, EUROCRYPT ’24, pages 3–32. Springer, 2024. ISBN 978-3-031-58737-5.
doi: 10.1007/978-3-031-58737-5 1. URL https://doi.org/10.1007/978-3-0

31-58737-5_1.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Physical Review Letters, 103(15), October
2009. ISSN 1079-7114. doi: 10.1103/physrevlett.103.150502. URL
https://doi.org/10.1103/physrevlett.103.150502.

Hiroshi Hasegawa, Junichi Ishikawa, Kazuma Takara, and Dean J. Driebe.
Generalization of the second law for a nonequilibrium initial state. Physics
Letters A, 374(8):1001–1004, February 2010. ISSN 0375-9601. doi: 10.1016/j.
physleta.2009.12.042. URL https://doi.org/10.1016/j.physleta.2009.12

.042.

John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space.
Journal of the ACM, 24(2):332–337, April 1977. ISSN 0004-5411. doi: 10.1145/
322003.322015. URL https://doi.org/10.1145/322003.322015.

260

https://doi.org/10.1145/237814.237866
https://doi.org/10.4230/LIPIcs.TQC.2021.1
https://doi.org/10.1007/978-3-031-58737-5_1
https://doi.org/10.1007/978-3-031-58737-5_1
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1016/j.physleta.2009.12.042
https://doi.org/10.1016/j.physleta.2009.12.042
https://doi.org/10.1145/322003.322015

Joseph F. JáJá and Janos Simon. Space efficient algorithms for some graph
theoretical problems. Acta Informatica, 17:411–423, October 1982. doi:
10.1007/BF00264160. URL https://doi.org/10.1007/BF00264160.

Nikolaos P. Karvelas and Aggelos Kiayias. Efficient proofs of secure erasure. In
Proceedings of Security and Cryptography for Networks, SCN ’14, pages 520–537.
Springer, 2014. ISBN 978-3-319-10879-7. doi: 10.1007/978-3-319-10879-7 30.
URL https://doi.org/10.1007/978-3-319-10879-7_30.

Kyozi Kawasaki. Diffusion constants near the critical point for time-dependent
ising models. i. Physical Review, 145(1):224–230, May 1966. ISSN 0031-899X.
doi: 10.1103/PhysRev.145.224. URL https://doi.org/10.1103/PhysRev.14

5.224.

Aleksei Y. Kitaev. Quantum computations: Algorithms and error correction.
Russian Mathematical Surveys, 52(6):1191–1249, December 1997. doi: 10.1070/
RM1997v052n06ABEH002155. URL https://doi.org/10.1070/RM1997v052

n06ABEH002155.

Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and classical
strong direct product theorems and optimal time-space tradeoffs. SIAM Journal
on Computing, 36(5):1472–1493, February 2007. ISSN 1095-7111. doi: 10.1137/
05063235x. URL https://doi.org/10.1137/05063235X.

Artemy Kolchinsky and David H Wolpert. Dependence of dissipation on the
initial distribution over states. Journal of Statistical Mechanics: Theory and
Experiment, 2017(8), August 2017. ISSN 1742-5468. doi: 10.1088/1742-5468/
aa7ee1. URL https://doi.org/10.1088/1742-5468/aa7ee1.

Balagopal Komarath, Jayalal Sarma, and Saurabh Sawlani. Reversible pebble
game on trees. In Proceedings of Computing and Combinatorics, COCOON ’15,
pages 83–94. Springer, 2015. ISBN 978-3-319-21398-9. doi: 10.1007/978-3-319
-21398-9 7. URL https://doi.org/10.1007/978-3-319-21398-9_7.

261

https://doi.org/10.1007/BF00264160
https://doi.org/10.1007/978-3-319-10879-7_30
https://doi.org/10.1103/PhysRev.145.224
https://doi.org/10.1103/PhysRev.145.224
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1137/05063235X
https://doi.org/10.1088/1742-5468/aa7ee1
https://doi.org/10.1007/978-3-319-21398-9_7

Niels Kornerup, Jonathan Sadun, and David Soloveichik. Tight bounds on
the spooky pebble game: Recycling qubits with measurements. Quantum, 9,
February 2025. ISSN 2521-327X. doi: 10.22331/q-2025-02-18-1636. URL
https://doi.org/10.22331/q-2025-02-18-1636.

Richard Král’ovič. Time and space complexity of reversible pebbling. In
Proceedings of the 28th Conference on Current Trends in Theory and Practice
of Informatics, SOFSEM ’01, pages 292–303. Springer, 2001. ISBN 978-3-540-
45627-8. doi: 10.1007/3-540-45627-9 26. URL https://doi.org/10.1007/

3-540-45627-9_26.

R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5(3):183–191, July 1961. ISSN 0018-8646.
doi: 10.1147/rd.53.0183. URL https://doi.org/10.1147/rd.53.0183.

Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals
deterministic space. Journal of Computer and System Sciences, 60(2):354–
367, April 2000. ISSN 0022-0000. doi: 10.1006/jcss.1999.1672. URL
https://doi.org/10.1006/jcss.1999.1672.

Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on
time-space trade-offs in a pebble game. Journal of the ACM, 29(4):1087–
1130, October 1982. ISSN 0004-5411. doi: 10.1145/322344.322354. URL
https://doi.org/10.1145/322344.322354.

Thomas Lengauer and Robert Endre Tarjan. Upper and lower bounds on time-
space tradeoffs. In Proceedings of the 11th Annual ACM Symposium on Theory of
Computing, STOC ’79, pages 262–277. ACM, 1979. ISBN 9781450374385. doi:
10.1145/800135.804420. URL https://doi.org/10.1145/800135.804420.

Robert Y. Levine and Alan T. Sherman. A note on bennett’s time-space
tradeoff for reversible computation. SIAM Journal on Computing, 19(4):

262

https://doi.org/10.22331/q-2025-02-18-1636
https://doi.org/10.1007/3-540-45627-9_26
https://doi.org/10.1007/3-540-45627-9_26
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1006/jcss.1999.1672
https://doi.org/10.1145/322344.322354
https://doi.org/10.1145/800135.804420

673–677, August 1990. ISSN 1095-7111. doi: 10.1137/0219046. URL
https://doi.org/10.1137/0219046.

Ming Li and Paul Vitanyi. Reversibility and adiabatic computation: Trading
time and space for energy. Proceedings of the Royal Society A, 452(1947):
769–789, April 1996. ISSN 13645021. doi: 10.1098/rspa.1996.0039. URL
https://doi.org/10.1098/rspa.1996.0039.

Ming Li, John Tromp, and Paul Vitányi. Reversible simulation of irreversible
computation. Physica D: Nonlinear Phenomena, 120(1-2):168–176, September
1998. ISSN 1872-8022. doi: 10.1016/s0167-2789(98)00052-9. URL https:

//doi.org/10.1016/s0167-2789(98)00052-9.

Qipeng Liu and Mark Zhandry. On finding quantum multi-collisions. In
Proceedings of Advances in Cryptology – EUROCRYPT 2019, EUROCRYPT
’19, pages 189–218. Springer, 2019. ISBN 978-3-030-17658-7. doi: 10.1007/97
8-3-030-17659-4 7. URL https://doi.org/10.1007/978-3-030-17659-4_7.

Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization.
Quantum, 3, July 2019. doi: 10.22331/q-2019-07-12-163. URL https:

//doi.org/10.22331/q-2019-07-12-163.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating
the carbon footprint of bloom, a 176b parameter language model. The Journal
of Machine Learning Research, 24(1), January 2023. ISSN 1532-4435.

Alessandro Luongo, Antonio Michele Miti, Varun Narasimhachar, and Adithya
Sireesh. Measurement-based uncomputation of quantum circuits for modular
arithmetic, 2024. URL https://doi.org/10.48550/arXiv.2407.20167.

Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational com-
plexity of universal hashing. Theoretical Computer Science, 107(1):121–133,

263

https://doi.org/10.1137/0219046
https://doi.org/10.1098/rspa.1996.0039
https://doi.org/10.1016/s0167-2789(98)00052-9
https://doi.org/10.1016/s0167-2789(98)00052-9
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.48550/arXiv.2407.20167

January 1993. ISSN 1879-2294. doi: 10.1016/0304-3975(93)90257-T. URL
https://doi.org/10.1016/0304-3975(93)90257-T.

Daniel D. McCracken and William S. Dorn. Numerical Methods and FORTRAN
Programming: With Applications in Engineering and Science. Wiley, 1964.
ISBN 9780471582854.

Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Proceedings of Advances in Cryptology – CRYPTO 1987, CRYPTO
’87, pages 369–378. Springer, 1988. ISBN 978-3-540-48184-3. doi: 10.1007/3-5
40-48184-2 32. URL https://doi.org/10.1007/3-540-48184-2_32.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The Journal of Chemical Physics, 21(6):1087–1092,
June 1953. ISSN 0021-9606. doi: 10.1063/1.1699114. URL https:

//doi.org/10.1063/1.1699114.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, March 2009.
URL https://bitcoin.org/bitcoin.pdf.

Lee A. Newberg. Memory-efficient dynamic programming backtrace and pairwise
local sequence alignment. Bioinformatics, 24(16):1772–1778, August 2008. ISSN
1367-4811. doi: 10.1093/bioinformatics/btn308. URL https://doi.org/10.1

093/bioinformatics/btn308.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.
ISBN 9781107002173. doi: 10.1017/CBO9780511976667. URL https:

//doi.org/10.1017/CBO9780511976667.

John D Norton. Brownian computation is thermodynamically irreversible.
Foundations of Physics, 43:1384–1410, October 2013.

264

https://doi.org/10.1016/0304-3975(93)90257-T
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1093/bioinformatics/btn308
https://doi.org/10.1093/bioinformatics/btn308
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

Mark Oskin, Frederic T. Chong, and Isaac L. Chuang. A practical architecture
for reliable quantum computers. Computer, 35(1):79–87, January 2002. ISSN
1460-2067. doi: 10.1109/2.976922. URL https://doi.org/10.1109/2.9769

22.

Thomas E. Ouldridge and David H. Wolpert. Thermodynamics of deterministic
finite automata operating locally and periodically. New Journal of Physics, 25
(12), December 2023. ISSN 1367-2630. doi: 10.1088/1367-2630/ad1070. URL
https://doi.org/10.1088/1367-2630/ad1070.

Jeremy A. Owen, Artemy Kolchinsky, and David H. Wolpert. Number of hidden
states needed to physically implement a given conditional distribution. New
Journal of Physics, 21(1), January 2019. ISSN 1367-2630. doi: 10.1088/1367-2
630/aaf81d. URL https://doi.org/10.1088/1367-2630/aaf81d.

Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev. Unqomp:
Synthesizing uncomputation in quantum circuits. In Proceedings of the 42nd
International Conference on Programming Language Design and Implementation,
PLDI ’21, pages 222–236. ACM, 2021. ISBN 9781450383912. doi: 10.1145/34
53483.3454040. URL https://doi.org/10.1145/3453483.3454040.

Juan M. R. Parrondo, Jordan M. Horowitz, and Takahiro Sagawa. Thermody-
namics of information. Nature Physics, 11(2):131–139, February 2015. ISSN
1745-2481. doi: 10.1038/nphys3230. URL https://doi.org/10.1038/nphys3

230.

Wolfgang J. Paul and Robert Endre Tarjan. Time-space trade-offs in a pebble
game. Acta Informatica, 10(2):111–115, June 1978. ISSN 1432-0525. doi:
10.1007/BF00289150. URL https://doi.org/10.1007/BF00289150.

Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a
game on graphs. In Proceedings of the 8th Annual ACM Symposium on Theory of

265

https://doi.org/10.1109/2.976922
https://doi.org/10.1109/2.976922
https://doi.org/10.1088/1367-2630/ad1070
https://doi.org/10.1088/1367-2630/aaf81d
https://doi.org/10.1145/3453483.3454040
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1007/BF00289150

Computing, STOC ’76, pages 149–160. ACM, 1976. ISBN 9781450374149. doi:
10.1145/800113.803643. URL https://doi.org/10.1145/800113.803643.

Anna N. Pearson, Yelena Guryanova, Paul Erker, Edward A. Laird, Andrew D.
Briggs, Marcus Huber, and Natalia Ares. Measuring the thermodynamic cost
of timekeeping. Physical Review X, 11, May 2021. ISSN 2160-3308. doi:
10.1103/PhysRevX.11.021029. URL https://doi.org/10.1103/PhysRevX.1

1.021029.

Simon Perdrix and Philippe Jorrand. Classically-controlled quantum com-
putation. Electronic Notes in Theoretical Computer Science, 135(3):119–128,
March 2006. ISSN 1571-0661. doi: 10.1016/j.entcs.2005.09.026. URL
https://doi.org/10.1016/j.entcs.2005.09.026.

Nicholas Pippenger. A time-space trade-off. Journal of the ACM, 25(3):
509–515, July 1978. ISSN 0004-5411. doi: 10.1145/322077.322091. URL
https://doi.org/10.1145/322077.322091.

Nicholas Pippenger. On simultaneous resource bounds. In Proceedings of
the 20th Annual Symposium on Foundations of Computer Science, SFCS ’79,
pages 307–311. IEEE, 1979. doi: 10.1109/SFCS.1979.29. URL https:

//doi.org/10.1109/SFCS.1979.29.

Arend-Jan Quist and Alfons Laarman. Optimizing quantum space using
spooky pebble games. In Proceedings of the 15th International Conference
on Reversible Computation, RC ’23, pages 134–149. Springer, 2023. ISBN
978-3-031-38100-3. doi: 10.1007/978-3-031-38100-3 10. URL https:

//doi.org/10.1007/978-3-031-38100-3_10.

Arend-Jan Quist and Alfons Laarman. Trade-offs between classical and quantum
space using spooky pebbling, 2024. URL https://doi.org/10.48550/arXiv

.2401.10579.

266

https://doi.org/10.1145/800113.803643
https://doi.org/10.1103/PhysRevX.11.021029
https://doi.org/10.1103/PhysRevX.11.021029
https://doi.org/10.1016/j.entcs.2005.09.026
https://doi.org/10.1145/322077.322091
https://doi.org/10.1109/SFCS.1979.29
https://doi.org/10.1109/SFCS.1979.29
https://doi.org/10.1007/978-3-031-38100-3_10
https://doi.org/10.1007/978-3-031-38100-3_10
https://doi.org/10.48550/arXiv.2401.10579
https://doi.org/10.48550/arXiv.2401.10579

Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In
Proceedings of the 14th International Conference on Theory of Cryptography,
volume 9985 of TCC ’16, pages 262–285. Springer, 2016. ISBN 9783662536407.
doi: 10.1007/978-3-662-53641-4 11. URL https://doi.org/10.1007/978-3

-662-53641-4_11.

Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William
Arcand, David Bestor, Bill Bergeron, Vijay Gadepally, Michael Houle, Matthew
Hubbell, Michael Jones, Anna Klein, Lauren Milechin, Julia Mullen, Andrew
Prout, Antonio Rosa, Charles Yee, and Peter Michaleas. Interactive supercom-
puting on 40,000 cores for machine learning and data analysis. In Proceedings
of the 2018 IEEE High Performance Extreme Computing Conference, HPEC
’18, pages 1–6. IEEE, 2018. doi: 10.1109/HPEC.2018.8547629. URL
https://doi.org/10.1109/HPEC.2018.8547629.

Eleanor Rieffel and Wolfgang Polak. Quantum Computing: A Gentle Introduc-
tion. The MIT Press, 2011. ISBN 9780262015066.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, February 1978. ISSN 0001-0782. doi: 10.1145/359340.359342.
URL http://doi.org/10.1145/359340.359342.

Ansis Rosmanis. Tight bounds for inverting permutations via compressed oracle
arguments, 2022. URL https://doi.org/10.48550/arXiv.2103.08975.

Mehdi Saeedi and Igor L. Markov. Synthesis and optimization of reversible
circuits—a survey. ACM Computing Surveys, 45(2), March 2013. ISSN 1557-
7341. doi: 10.1145/2431211.2431220. URL http://doi.org/10.1145/243121

1.2431220.

267

https://doi.org/10.1007/978-3-662-53641-4_11
https://doi.org/10.1007/978-3-662-53641-4_11
https://doi.org/10.1109/HPEC.2018.8547629
http://doi.org/10.1145/359340.359342
https://doi.org/10.48550/arXiv.2103.08975
http://doi.org/10.1145/2431211.2431220
http://doi.org/10.1145/2431211.2431220

Takahiro Sagawa. Thermodynamic and logical reversibilities revisited. Journal
of Statistical Mechanics: Theory and Experiment, 2014(3), March 2014. ISSN
1742-5468. doi: 10.1088/1742-5468/2014/03/P03025. URL https://doi.org/

10.1088/1742-5468/2014/03/P03025.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas,
Michael Jones, William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay
Gadepally. From words to watts: Benchmarking the energy costs of large
language model inference. In Proceedings of the 2023 IEEE High Performance
Extreme Computing Conference, HPEC ’23, pages 1–9, December 2023. doi:
10.1109/HPEC58863.2023.10363447. URL https://doi.org/10.1109/HPEC58

863.2023.10363447.

John E. Savage and Sowmitri Swamy. Space-time trade-offs on the fft algorithm.
IEEE Transactions on Information Theory, 24(5):563–568, September 1978.
ISSN 1557-9654. doi: 10.1109/TIT.1978.1055938. URL https://doi.org/10

.1109/TIT.1978.1055938.

Ravi Sethi. Complete register allocation problems. In Proceedings of the 5th
Annual ACM Symposium on Theory of Computing, STOC ’73, pages 182–195.
ACM, 1973. ISBN 9781450374309. doi: 10.1145/800125.804049. URL
https://doi.org/10.1145/800125.804049.

Arman Shehabi, Sarah J. Smith, Alex Hubbard, Alex Newkirk, Nuoa Lei,
Md Abu Bakar Siddik, Billie Holecek, Jonathan Koomey, Eric Masanet, and
Dale Sartor. 2024 united states data center energy usage report. Technical
report, Lawrence Berkeley National Laboratory, 2024.

Alexander A. Sherstov. Strong direct product theorems for quantum com-
munication and query complexity. SIAM Journal on Computing, 41(5):1122–
1165, September 2012. ISSN 1095-7111. doi: 10.1137/110842661. URL
https://doi.org/10.1137/110842661.

268

https://doi.org/10.1088/1742-5468/2014/03/P03025
https://doi.org/10.1088/1742-5468/2014/03/P03025
https://doi.org/10.1109/HPEC58863.2023.10363447
https://doi.org/10.1109/HPEC58863.2023.10363447
https://doi.org/10.1109/TIT.1978.1055938
https://doi.org/10.1109/TIT.1978.1055938
https://doi.org/10.1145/800125.804049
https://doi.org/10.1137/110842661

Yaoyun Shi. Both toffoli and controlled-not need little help to do universal
quantum computing. Quantum Information and Computation, 3(1):84–92,
January 2003. ISSN 1533-7146. doi: 10.26421/QIC3.1-7. URL https:

//doi.org/10.26421/QIC3.1-7.

Daniel Simon. On the power of quantum computation. SIAM Journal on
Computing, 26(5):1474–1483, October 1997. doi: 10.1137/S0097539796298637.
URL https://doi.org/10.1137/S0097539796298637.

Robert Spalek. The multiplicative quantum adversary. In Proceedings of
the 23rd Annual IEEE Conference on Computational Complexity, CCC ’08,
pages 237–248. IEEE, 2008. doi: 10.1109/CCC.2008.9. URL https:

//doi.org/10.1109/CCC.2008.9.

Robert Spalek and Mario Szegedy. All quantum adversary methods are equiva-
lent. Theory of Computing, 2, 2006. ISSN 1557-2862. doi: 10.4086/TOC.2006
.V002A001. URL https://doi.org/10.4086/toc.2006.v002a001.

Philipp Strasberg, Javier Cerrillo, Gernot Schaller, and Tobias Brandes. Ther-
modynamics of stochastic turing machines. Physical Review E, 92(4), Oc-
tober 2015. ISSN 2470-0053. doi: 10.1103/PhysRevE.92.042104. URL
https://doi.org/10.1103/PhysRevE.92.042104.

Ewin Tang. A quantum-inspired classical algorithm for recommendation systems.
In Proceedings of the 51st Annual ACM Symposium on Theory of Computing,
STOC ’19, pages 217–228. ACM, 2019. doi: 10.1145/3313276.3316310. URL
https://doi.org/10.1145/3313276.3316310.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An
instruction-following llama model. https://github.com/tatsu-lab/stanfor

d_alpaca, 2023.

269

https://doi.org/10.26421/QIC3.1-7
https://doi.org/10.26421/QIC3.1-7
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1109/CCC.2008.9
https://doi.org/10.1109/CCC.2008.9
https://doi.org/10.4086/toc.2006.v002a001
https://doi.org/10.1103/PhysRevE.92.042104
https://doi.org/10.1145/3313276.3316310
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Martin Tompa. Time-space tradeoffs for computing functions, using connectivity
properties of their circuits. In Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing, STOC ’78, pages 196–204. ACM, 1978. ISBN
9781450374378. doi: 10.1145/800133.804348. URL https://doi.org/10.114

5/800133.804348.

Martin Tompa. Time-space tradeoffs for computing functions, using connectivity
properties of their circuits. Journal of Computer and System Sciences, 20(2):
118–132, 1980. ISSN 0022-0000. doi: 10.1016/0022-0000(80)90056-2. URL
https://doi.org/10.1016/0022-0000(80)90056-2.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. Llama: Open and efficient foundation language models, 2023. URL
https://doi.org/10.48550/arXiv.2302.13971.

Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979. ISSN 1095-7111. doi:
10.1137/0208032. URL https://doi.org/10.1137/0208032.

Raymond Wheeler and Richard Hughey. Optimizing reduced-space sequence
analysis. Bioinformatics, 16(12):1082–1090, 2000. ISSN 1367-4811. doi:
10.1093/bioinformatics/16.12.1082. URL https://doi.org/10.1093/bioinf

ormatics/16.12.1082.

David H Wolpert. The stochastic thermodynamics of computation. Journal of
Physics A: Mathematical and Theoretical, 52(19), 2019. ISSN 1751-8121. doi:
10.1088/1751-8121/ab0850. URL https://doi.org/10.1088/1751-8121/ab

0850.

270

https://doi.org/10.1145/800133.804348
https://doi.org/10.1145/800133.804348
https://doi.org/10.1016/0022-0000(80)90056-2
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.1137/0208032
https://doi.org/10.1093/bioinformatics/16.12.1082
https://doi.org/10.1093/bioinformatics/16.12.1082
https://doi.org/10.1088/1751-8121/ab0850
https://doi.org/10.1088/1751-8121/ab0850

David H Wolpert and Artemy Kolchinsky. Thermodynamics of computing with
circuits. New Journal of Physics, 22(6), June 2020. ISSN 1367-2630. doi: 10.1
088/1367-2630/ab82b8. URL https://doi.org/10.1088/1367-2630/ab82b8.

David H. Wolpert, Jan Korbel, Christopher W. Lynn, Farita Tasnim, Joshua A.
Grochow, Gülce Kardeş, James B. Aimone, Vijay Balasubramanian, Eric
De Giuli, David Doty, Nahuel Freitas, Matteo Marsili, Thomas E. Ouldridge,
Andréa W. Richa, Paul Riechers, Édgar Roldán, Brenda Rubenstein, Zoltan
Toroczkai, and Joseph Paradiso. Is stochastic thermodynamics the key to under-
standing the energy costs of computation? Proceedings of the National Academy
of Sciences, 121(45), 2024. ISSN 1091-6490. doi: 10.1073/pnas.2321112121.
URL https://doi.org/10.1073/pnas.2321112121.

Abhishek Yadav, Francesco Caravelli, and David Wolpert. Mismatch cost of
computing: From circuits to algorithms, 2024. URL https://doi.org/10.485

50/arXiv.2411.16088.

Andrew C. Yao. Probabilistic computations: Toward a unified measure of
complexity (extended abstract). In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, pages 222–227. IEEE, 1977.
doi: 10.1109/sfcs.1977.24. URL https://doi.org/10.1109/SFCS.1977.24.

Yaacov Yesha. Time-space trade-offs for matrix multiplication and the discrete
fourier transform on any general sequential random-access computer. Journal
of Computer and System Sciences, 29(2):183–197, 1984. ISSN 0022-0000. doi:
10.1016/0022-0000(84)90029-1. URL https://doi.org/10.1016/0022-000

0(84)90029-1.

Justin Yirka. Even quantum advice is unlikely to solve pp, 2024. URL
https://doi.org/10.48550/arXiv.2403.09994.

271

https://doi.org/10.1088/1367-2630/ab82b8
https://doi.org/10.1073/pnas.2321112121
https://doi.org/10.48550/arXiv.2411.16088
https://doi.org/10.48550/arXiv.2411.16088
https://doi.org/10.1109/SFCS.1977.24
https://doi.org/10.1016/0022-0000(84)90029-1
https://doi.org/10.1016/0022-0000(84)90029-1
https://doi.org/10.48550/arXiv.2403.09994

Mark Zhandry. How to record quantum queries, and applications to quantum
indifferentiability. In Proceedings of Advances in Cryptology – CRYPTO 2019,
CRYPTO ’19, pages 239–268. Springer, 2019. ISBN 978-3-030-26951-7.

272

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Preliminaries
	A brief introduction to quantum computing

	Part I Time and space for quantum and classical computation
	Chapter 2: Tight bounds on the spooky pebble game
	Introduction
	Preliminaries
	Pebbling, unpebbling, and unghosting
	Algorithms for spooky pebbling the line
	Lower bounds for spooky pebbling the line
	The existence of well-structured optimal pebbling algorithms.
	Analysis of T(n,s)

	Spooky pebbling beyond the line graph
	Hardness of approximation
	Efficient pebbling of the tree

	Chapter 3: Quantum time-space tradeoffs for matrix problems
	Introduction
	Preliminaries
	Time space tradeoffs for multi-output functions
	The quantum recording query technique

	Our bucketing methods
	Bucketing
	When do good bucket reduction schemes exist?

	Quantum matrix vector products
	Success probability of small depth quantum circuits
	Related time-space tradeoffs

	Quantum matrix multiplication
	The success probability of small depth quantum circuits
	Related time-space tradeoffs

	Quantum tradeoffs for Boolean matrix operations
	Tradeoffs for Boolean matrix multiplication
	Boolean matrix-vector product

	Deterministic query algorithms

	Chapter 4: Cumulative memory lower bounds for randomized and quantum computation
	Introduction
	Preliminaries
	A gap between time-space product and cumulative memory
	Cumulative memory complexity of classical sorting algorithms
	Quantum cumulative memory complexity of sorting
	General methods for proving cumulative memory lower bounds
	Applications of our general theorems to classical and quantum computation
	Classical applications of the generic method
	Quantum applications of the generic method

	Part II Energy and the thermodynamics of computation
	Chapter 5: Energy-efficient Brownian sampling and computation
	Introduction
	Main results
	Roadmap

	Preliminaries
	Las Vegas sampler
	Construction

	Monte Carlo sampler
	Construction

	Function computation
	Construction

	Discussion

	Chapter 6: The computational complexity of optimizing the thermodynamics of Boolean circuits
	Introduction
	Preliminaries
	Thermodynamics of Boolean circuits
	Computational complexity

	Optimal heat functions for known input distributions
	Logically reversible operations may require entropy production
	PP-hardness of minimizing entropy flow
	Hardness of approximation

	Chapter 7: Conclusions
	Summary
	Future work

	Appendix
	Cumulative memory complexity
	Extending the lower bound to arbitrary success probabilities
	Optimizations
	Bounding the loss

	Works Cited

